This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350256 #11 Dec 23 2021 10:06:39 %S A350256 1,0,1,0,2,6,0,5,22,57,0,15,94,309,756,0,52,454,1866,5428,12880,0,203, %T A350256 2430,12351,42356,115155,268098,0,877,14214,88563,355636,1101705, %U A350256 2869242,6593839,0,4140,89918,681870,3188340,11202680,32510850,82187658,187104200 %N A350256 Triangle read by rows. T(n, k) = BellPolynomial(n, k). %e A350256 Triangle begins: %e A350256 [0] 1 %e A350256 [1] 0, 1 %e A350256 [2] 0, 2, 6 %e A350256 [3] 0, 5, 22, 57 %e A350256 [4] 0, 15, 94, 309, 756 %e A350256 [5] 0, 52, 454, 1866, 5428, 12880 %e A350256 [6] 0, 203, 2430, 12351, 42356, 115155, 268098 %e A350256 [7] 0, 877, 14214, 88563, 355636, 1101705, 2869242, 6593839 %e A350256 [8] 0, 4140, 89918, 681870, 3188340, 11202680, 32510850, 82187658, 187104200 %p A350256 A350256 := (n, k) -> ifelse(n = 0, 1, BellB(n, k)): %p A350256 seq(seq(A350256(n, k), k = 0..n), n = 0..8); %t A350256 T[n_, k_] := BellB[n, k]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten %Y A350256 Cf. A242817 (main diagonal), A000110 (column 1), A350264 (row sums), A350263 (Bell(n,-k)), A189233 and A292860 (array). %K A350256 nonn,tabl %O A350256 0,5 %A A350256 _Peter Luschny_, Dec 22 2021