cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350257 Triangle read by rows. T(n, k) = k^n * BellPolynomial(n, k).

This page as a plain text file.
%I A350257 #8 Dec 30 2021 07:23:30
%S A350257 1,0,1,0,2,24,0,5,176,1539,0,15,1504,25029,193536,0,52,14528,453438,
%T A350257 5558272,40250000,0,203,155520,9003879,173490176,1799296875,
%U A350257 12508380288,0,877,1819392,193687281,5826740224,86070703125,803204128512,5430309951577
%N A350257 Triangle read by rows. T(n, k) = k^n * BellPolynomial(n, k).
%e A350257 Triangle starts:
%e A350257 [0] 1
%e A350257 [1] 0,   1
%e A350257 [2] 0,   2,      24
%e A350257 [3] 0,   5,     176,     1539
%e A350257 [4] 0,  15,    1504,    25029,     193536
%e A350257 [5] 0,  52,   14528,   453438,    5558272,    40250000
%e A350257 [6] 0, 203,  155520,  9003879,  173490176,  1799296875, 12508380288
%p A350257 A350257 := (n, k) -> ifelse(n = 0, 1, k^n * BellB(n, k)):
%p A350257 seq(seq(A350257(n, k), k = 0..n), n = 0..7);
%t A350257 T[n_, k_] := k^n BellB[n, k]; Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten
%Y A350257 Cf. A350256, A350258, A350259, A350260, A350261, A350262, A350263.
%Y A350257 Cf. A000110.
%K A350257 nonn,tabl
%O A350257 0,5
%A A350257 _Peter Luschny_, Dec 22 2021