This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350257 #8 Dec 30 2021 07:23:30 %S A350257 1,0,1,0,2,24,0,5,176,1539,0,15,1504,25029,193536,0,52,14528,453438, %T A350257 5558272,40250000,0,203,155520,9003879,173490176,1799296875, %U A350257 12508380288,0,877,1819392,193687281,5826740224,86070703125,803204128512,5430309951577 %N A350257 Triangle read by rows. T(n, k) = k^n * BellPolynomial(n, k). %e A350257 Triangle starts: %e A350257 [0] 1 %e A350257 [1] 0, 1 %e A350257 [2] 0, 2, 24 %e A350257 [3] 0, 5, 176, 1539 %e A350257 [4] 0, 15, 1504, 25029, 193536 %e A350257 [5] 0, 52, 14528, 453438, 5558272, 40250000 %e A350257 [6] 0, 203, 155520, 9003879, 173490176, 1799296875, 12508380288 %p A350257 A350257 := (n, k) -> ifelse(n = 0, 1, k^n * BellB(n, k)): %p A350257 seq(seq(A350257(n, k), k = 0..n), n = 0..7); %t A350257 T[n_, k_] := k^n BellB[n, k]; Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten %Y A350257 Cf. A350256, A350258, A350259, A350260, A350261, A350262, A350263. %Y A350257 Cf. A000110. %K A350257 nonn,tabl %O A350257 0,5 %A A350257 _Peter Luschny_, Dec 22 2021