cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350259 Triangle read by rows. T(n, k) = n! * BellPolynomial(n, k).

This page as a plain text file.
%I A350259 #8 Dec 30 2021 07:23:24
%S A350259 1,0,1,0,4,12,0,30,132,342,0,360,2256,7416,18144,0,6240,54480,223920,
%T A350259 651360,1545600,0,146160,1749600,8892720,30496320,82911600,193030560,
%U A350259 0,4420080,71638560,446357520,1792405440,5552593200,14460979680,33232948560
%N A350259 Triangle read by rows. T(n, k) = n! * BellPolynomial(n, k).
%e A350259 Triangle starts:
%e A350259 [0] 1
%e A350259 [1] 0,      1
%e A350259 [2] 0,      4,      12
%e A350259 [3] 0,     30,     132,     342
%e A350259 [4] 0,    360,    2256,    7416,    18144
%e A350259 [5] 0,   6240,   54480,  223920,   651360,  1545600
%e A350259 [6] 0, 146160, 1749600, 8892720, 30496320, 82911600, 193030560
%p A350259 A350259 := (n, k) -> ifelse(n = 0, 1, n! * BellB(n, k)):
%p A350259 seq(seq(A350259(n, k), k = 0..n), n = 0..7);
%t A350259 T[n_, k_] := n! BellB[n, k]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
%Y A350259 Cf. A350256, A350257, A350258, A350260, A350261, A350262, A350263.
%Y A350259 Cf. A000110, A137341.
%K A350259 nonn,tabl
%O A350259 0,5
%A A350259 _Peter Luschny_, Dec 22 2021