This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350260 #8 Dec 30 2021 07:23:20 %S A350260 1,0,1,0,2,3,0,5,11,19,0,15,49,109,201,0,52,257,742,1657,3176,0,203, %T A350260 1539,5815,15821,35451,69823,0,877,10299,51193,170389,447981,1007407, %U A350260 2026249,0,4140,75905,498118,2032785,6282416,16157905,36458010,74565473 %N A350260 Triangle read by rows. T(n, k) = k^n * BellPolynomial(n, 1/k) for k > 0, if k = 0 then T(n, k) = k^n. %e A350260 Triangle starts: %e A350260 [0] 1 %e A350260 [1] 0, 1 %e A350260 [2] 0, 2, 3 %e A350260 [3] 0, 5, 11, 19 %e A350260 [4] 0, 15, 49, 109, 201 %e A350260 [5] 0, 52, 257, 742, 1657, 3176 %e A350260 [6] 0, 203, 1539, 5815, 15821, 35451, 69823 %e A350260 [7] 0, 877, 10299, 51193, 170389, 447981, 1007407, 2026249 %e A350260 [8] 0, 4140, 75905, 498118, 2032785, 6282416, 16157905, 36458010, 74565473 %p A350260 A350260 := (n, k) -> ifelse(k = 0, k^n, k^n * BellB(n, 1/k)): %p A350260 seq(seq(A350260(n, k), k = 0..n), n = 0..8); %t A350260 T[n_, k_] := If[k == 0, k^n, k^n BellB[n, 1/k]]; %t A350260 Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten %Y A350260 Cf. A350256, A350257, A350258, A350259, A350261, A350262, A350263. %Y A350260 Cf. A000110, A301419. %K A350260 nonn,tabl %O A350260 0,5 %A A350260 _Peter Luschny_, Dec 22 2021