This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350261 #8 Dec 30 2021 07:23:17 %S A350261 1,0,-1,0,0,-1,0,1,1,-1,0,1,9,19,25,0,-2,23,128,343,674,0,-9,-25,379, %T A350261 2133,6551,15211,0,-9,-583,-1549,3603,33479,123821,331827,0,50,-3087, %U A350261 -32600,-112975,-174114,120865,1619108,5987745 %N A350261 Triangle read by rows. T(n, k) = k^n * BellPolynomial(n, -1/k) for k > 0, if k = 0 then T(n, k) = k^n. %e A350261 Triangle starts: %e A350261 [0] 1 %e A350261 [1] 0, -1 %e A350261 [2] 0, 0, -1 %e A350261 [3] 0, 1, 1, -1 %e A350261 [4] 0, 1, 9, 19, 25 %e A350261 [5] 0, -2, 23, 128, 343, 674 %e A350261 [6] 0, -9, -25, 379, 2133, 6551, 15211 %e A350261 [7] 0, -9, -583, -1549, 3603, 33479, 123821, 331827 %e A350261 [8] 0, 50, -3087, -32600, -112975, -174114, 120865, 1619108, 5987745 %p A350261 A350261 := (n, k) -> ifelse(k = 0, k^n, k^n * BellB(n, -1/k)): %p A350261 seq(seq(A350261(n, k), k = 0..n), n = 0..8); %t A350261 T[n_, k_] := If[k == 0, k^n, k^n BellB[n, -1/k]]; %t A350261 Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten %Y A350261 Cf. A350256, A350257, A350258, A350259, A350260, A350262, A350263. %Y A350261 Cf. A000587, A318183. %K A350261 sign,tabl %O A350261 0,13 %A A350261 _Peter Luschny_, Dec 22 2021