This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350271 #14 Aug 01 2022 08:21:52 %S A350271 0,1,2,6,12,28,56,120 %N A350271 The covering radius of the first order Reed-Muller code RM(1,n). %C A350271 242 <= a(9) <= 244. %C A350271 For odd values of n, we have 2^(n-1) - 2^((n-1)/2) <= a(n) <= 2*floor(2^(n-2) - 2^(n/2-2)). %H A350271 C. Carlet, <a href="https://doi.org/10.1017/9781108606806">Boolean Functions for Cryptography and Coding Theory</a>, Cambridge University Press (2021), Section 4.1.6. %H A350271 T. Helleseth, T. Klove and J. Mykkeltveit, <a href="https://doi.org/10.1109/TIT.1978.1055928">On the covering radius of binary codes (Corresp.)</a>, IEEE Transactions on Information Theory, Vol. 24 (1978). %H A350271 X. Hou, <a href="https://doi.org/10.1109/18.568715">On the norm and covering radius of the first-order Reed-Muller codes</a>, IEEE Transactions on Information Theory, Vol. 43 (1997). %H A350271 S. Kavut and M. D. Yücel, <a href="https://doi.org/10.1016/j.ic.2009.12.002">9-variable Boolean functions with nonlinearity 242 in the generalized rotation symmetric class</a>, Information and Computation, Vol. 208 (2010). %H A350271 O. S. Rothaus, <a href="https://doi.org/10.1016/0097-3165(76)90024-8">On "bent" functions</a>, Journal of Combinatorial Theory, Series A, Vol. 20 (1976). %F A350271 a(2n) = A006516(n). %Y A350271 Cf. A006516. %K A350271 nonn,hard,more %O A350271 1,3 %A A350271 _Christof Beierle_, Dec 22 2021