This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350274 #29 Feb 17 2022 13:20:06 %S A350274 1,1,2,6,23,1,109,1,10,619,16,45,40,4108,92,210,420,210,31240,771, %T A350274 1645,2800,2520,1344,268028,6883,17325,15960,26460,18144,10080, %U A350274 2562156,68914,173250,148400,226800,211680,151200,86400,27011016,757934,1854930,1798720,1801800,2494800,1940400,1425600,831600 %N A350274 Triangle read by rows: T(n,k) is the number of n-permutations whose fourth-shortest cycle has length exactly k; n >= 0, 0 <= k <= max(0,n-3). %C A350274 If the permutation has no fourth cycle, then its fourth-longest cycle is defined to have length 0. %H A350274 Alois P. Heinz, <a href="/A350274/b350274.txt">Rows n = 0..100, flattened</a> %H A350274 Steven Finch, <a href="http://arxiv.org/abs/2202.07621">Second best, Third worst, Fourth in line</a>, arxiv:2202.07621 [math.CO], 2022. %F A350274 Sum_{k=0..n-3} k * T(n,k) = A332908(n) for n >= 4. %e A350274 Triangle begins: %e A350274 [0] 1; %e A350274 [1] 1; %e A350274 [2] 2; %e A350274 [3] 6; %e A350274 [4] 23, 1; %e A350274 [5] 109, 1, 10; %e A350274 [6] 619, 16, 45, 40; %e A350274 [7] 4108, 92, 210, 420, 210; %e A350274 [8] 31240, 771, 1645, 2800, 2520, 1344; %e A350274 [9] 268028, 6883, 17325, 15960, 26460, 18144, 10080; %e A350274 ... %p A350274 m:= infinity: %p A350274 b:= proc(n, l) option remember; `if`(n=0, x^`if`(l[4]=m, %p A350274 0, l[4]), add(b(n-j, sort([l[], j])[1..4]) %p A350274 *binomial(n-1, j-1)*(j-1)!, j=1..n)) %p A350274 end: %p A350274 T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [m$4])): %p A350274 seq(T(n), n=0..11); # _Alois P. Heinz_, Dec 22 2021 %t A350274 m = Infinity; %t A350274 b[n_, l_] := b[n, l] = If[n == 0, x^If[l[[4]] == m, 0, l[[4]]], Sum[b[n-j, Sort[Append[l, j]][[1 ;; 4]]]*Binomial[n-1, j-1]*(j-1)!, {j, 1, n}]]; %t A350274 T[n_] := With[{p = b[n, {m, m, m, m}]}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]]; %t A350274 Table[T[n], {n, 0, 11}] // Flatten (* _Jean-François Alcover_, Dec 29 2021, after _Alois P. Heinz_ *) %Y A350274 Column 0 is 1 for n=0, together with A000142(n) - A122105(n-1) for n>=1. %Y A350274 Row sums give A000142. %Y A350274 Cf. A126074, A145877, A332908, A349979, A349980, A350015, A350016, A350273. %K A350274 nonn,tabf %O A350274 0,3 %A A350274 _Steven Finch_, Dec 22 2021 %E A350274 More terms from _Alois P. Heinz_, Dec 22 2021