This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350279 #22 Sep 13 2024 08:11:16 %S A350279 1,3,1,5,3,1,7,11,17,9,3,1,9,3,1,11,17,9,3,1,13,7,11,17,9,3,1,15,5,3, %T A350279 1,17,9,3,1,19,29,15,5,3,1,21,7,11,17,9,3,1,23,35,53,27,9,3,1,25,13,7, %U A350279 11,17,9,3,1,27,9,3,1,29,15,5,3,1 %N A350279 Irregular triangle T(n,k) read by rows in which row n lists the iterates of the Farkas map (A349407) from 2*n - 1 to 1. %H A350279 Paolo Xausa, <a href="/A350279/b350279.txt">Table of n, a(n) for n = 1..12301</a> (rows 1..1000 of triangle, flattened). %H A350279 H. M. Farkas, "Variants of the 3N+1 Conjecture and Multiplicative Semigroups", in Entov, Pinchover and Sageev, <a href="https://bookstore.ams.org/conm-387">Geometry, Spectral Theory, Groups, and Dynamics, Contemporary Mathematics, vol. 387</a>, American Mathematical Society, 2005, p. 121. %H A350279 J. C. Lagarias, ed., <a href="http://www.ams.org/bookstore-getitem/item=mbk-78">The Ultimate Challenge: The 3x+1 Problem</a>, American Mathematical Society, 2010, p. 74. %F A350279 T(n,1) = 2*n-1; T(n,k) = A349407((T(n,k-1)+1)/2), where n >= 1 and k >= 2. %e A350279 Written as an irregular triangle, the sequence begins: %e A350279 n\k 1 2 3 4 5 6 7 %e A350279 ------------------------------- %e A350279 1: 1 %e A350279 2: 3 1 %e A350279 3: 5 3 1 %e A350279 4: 7 11 17 9 3 1 %e A350279 5: 9 3 1 %e A350279 6: 11 17 9 3 1 %e A350279 7: 13 7 11 17 9 3 1 %e A350279 8: 15 5 3 1 %e A350279 9: 17 9 3 1 %e A350279 10: 19 29 15 5 3 1 %e A350279 11: 21 7 11 17 9 3 1 %e A350279 12: 23 35 53 27 9 3 1 %t A350279 FarkasStep[x_] := Which[Divisible[x, 3], x/3, Mod[x, 4] == 3, (3*x + 1)/2, True, (x + 1)/2]; %t A350279 Array[Most[FixedPointList[FarkasStep, 2*# - 1]] &, 15] (* _Paolo Xausa_, Sep 03 2024 *) %Y A350279 Cf. A349407, A375909 (# of iterations), A375910 (row sums), A375911 (row maxs). %Y A350279 Cf. A070165. %K A350279 nonn,easy,tabf %O A350279 1,2 %A A350279 _Paolo Xausa_, Dec 22 2021