This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350295 #21 Jul 01 2022 10:21:58 %S A350295 6,8,10,15,21,28,36,45,55,66,78,91,105,120,136,153,171,190,210,231, %T A350295 253,276,300,325,351,378,406,435,465,496,528,561,595,630,666,703,741, %U A350295 780,820,861,903,946,990,1035,1081,1128,1176,1225,1275,1326,1378,1431,1485,1540 %N A350295 2nd subdiagonal of the triangle A350292. %H A350295 Harvey P. Dale, <a href="/A350295/b350295.txt">Table of n, a(n) for n = 3..1000</a> %H A350295 Heiko Harborth and Hauke Nienborg, <a href="https://www.researchgate.net/publication/266861957_Saturated_vertex_Turan_numbers_for_cube_graphs">Saturated vertex TurĂ¡n numbers for cube graphs</a>, Congr. Num. 208 (2011), 183-188. %H A350295 Mathonline, <a href="http://mathonline.wikidot.com/cube-graphs">Cube Graphs</a> %H A350295 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A350295 a(n) = binomial(n, 2) = A000217(n-1) for n > 4 with a(3) = 6 and a(4) = 8 (see Theorem 3 in Harborth and Nienborg). %F A350295 O.g.f.: x^3*(2*x^4 - 3*x^3 - 4*x^2 + 10*x - 6)/(x - 1)^3. %F A350295 E.g.f.: x^2*(x^2 + 6*x + 6*exp(x) - 6)/12. %F A350295 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 7. %t A350295 Join[{6,8},Table[Binomial[n,2],{n,5,56}]] %t A350295 LinearRecurrence[{3,-3,1},{6,8,10,15,21},60] (* _Harvey P. Dale_, Jul 01 2022 *) %Y A350295 Cf. A000217, A112355, A161680, A350292. %K A350295 nonn,easy %O A350295 3,1 %A A350295 _Stefano Spezia_, Dec 23 2021