cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350299 Numbers k > 1 with sigma(k)/(k * log(log(k))) > sigma(m)/(m * log(log(m))) for all m > k, sigma(k) being A000203(k), the sum of the divisors of k.

This page as a plain text file.
%I A350299 #23 Jan 06 2022 11:29:06
%S A350299 3,4,6,12,24,60,120,180,360,2520,5040
%N A350299 Numbers k > 1 with sigma(k)/(k * log(log(k))) > sigma(m)/(m * log(log(m))) for all m > k, sigma(k) being A000203(k), the sum of the divisors of k.
%C A350299 Gronwall's theorem says that lim sup_{k -> infinity} sigma(k)/(k*log(log(k))) = exp(gamma). Moreover if the Riemann hypothesis is true, we have sigma(k)/(k*log(log(k))) < exp(gamma) when k > 5040 (gamma = Euler-Mascheroni constant).
%C A350299 The terms in the sequence listed above are provably correct since their ratios: sigma(k)/(k * log(log(k))) are greater than exp(gamma).
%D A350299 Guy Robin, Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann, J. Math. Pures Appl. 63 (1984), 187-213.
%H A350299 Keith Briggs, <a href="https://projecteuclid.org/journals/experimental-mathematics/volume-15/issue-2/Abundant-Numbers-and-the-Riemann-Hypothesis/em/1175789744.full">Abundant numbers and the Riemann Hypothesis</a>, Experimental Math., Vol. 16 (2006), pp. 251-256.
%H A350299 S. Nazardonyavi and S. Yakubovich, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Nazar/nazar4.html">Extremely Abundant Numbers and the Riemann Hypothesis</a>, Journal of Integer Sequences, 17 (2014), Article 14.2.8.
%H A350299 Thomas Strohmann, <a href="/A350299/a350299.cpp.txt">C++ code</a>
%Y A350299 Cf. A000203, A067698, A004394, A002093, A004490.
%Y A350299 Cf. also A001620, A073004.
%K A350299 nonn
%O A350299 1,1
%A A350299 _Thomas Strohmann_, Dec 23 2021