cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350303 a(n) is the number of ways to partition the set of vertices of a convex (n+14)-gon into 5 nonintersecting polygons.

This page as a plain text file.
%I A350303 #38 Feb 20 2022 20:29:02
%S A350303 0,273,1820,7140,21420,54264,122094,251370,482790,876645,1519518,
%T A350303 2532530,4081350,6388200,9746100,14535612,21244356,30489585,43044120,
%U A350303 59865960,82131896,111275472,149029650,197474550,259090650,336817845,434120778,555060870,704375490,887564720,1110986184
%N A350303 a(n) is the number of ways to partition the set of vertices of a convex (n+14)-gon into 5 nonintersecting polygons.
%C A350303 Equivalently, the number of noncrossing set partitions of an (n+14)-set into 5 blocks with 3 or more elements in each block.
%H A350303 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (9,-36,84,-126,126,-84,36,-9,1).
%F A350303 a(n) = (1/2880)*n*(n+1)*(n+2)*(n+3)*(n+11)*(n+12)*(n+13)*(n+14).
%F A350303 G.f.: 7*x*(39 - 91*x + 84*x^2 - 36*x^3 + 6*x^4)/(1 - x)^9. - _Stefano Spezia_, Dec 26 2021
%e A350303 The a(1)=273 solutions are {1,2,3} {4,5,6} {7,8,9} {10,11,12} {13,14,15} with its 3 different orientations and each of the following 18 patterns with its 15 orientations:
%e A350303   {1,2,3} {4,5,15}  {6,7,8}   {9,10,11} {12,13,14}
%e A350303   {1,2,3} {4,14,15} {5,6,7}   {8,9,10}  {11,12 13}
%e A350303   {1,2,3} {4,5,6}   {7,8,15}  {9,10,11} {12 13,14}
%e A350303   {1,2,3} {4,5,15}  {6,7,14}  {8,9,10}  {11,12,13}
%e A350303   {1,2,3} {4,14,15} {5,12,13} {6,7,8}   {9,10,11}
%e A350303   {1,2,3} {4,5,15}  {6,13,14} {7,8,9}   {10,11,12}
%e A350303   {1,2,3} {4,14,15} {5,6,13}  {7,8,9}   {10,11,12}
%e A350303   {1,2,3} {4,5,15}  {6,7,14}  {8,9,13}  {10,11,12}
%e A350303   {1,2,3} {4,5,15}  {6,7,14}  {8,12,13} {9,10,11}
%e A350303   {1,2,3} {4,5,15}  {6,13,14} {7,8,12}  {9,10,11}
%e A350303   {1,2,3} {4,14,15} {5,12,13} {6,7,11}  {8,9,10}
%e A350303   {1,2,3} {4,15,8}  {5,6,7}   {9,10,11} {12,13,14}
%e A350303   {1,2,3} {4,15,8}  {5,6,7}   {9,13,14} {10,11,12}
%e A350303   {1,2,3} {4,15,8}  {5,6,7}   {9,10,14} {11,12,13}
%e A350303   {1,2,3} {4,5,15}  {6,7,8}   {9,10,14} {11,12,13}
%e A350303   {1,2,3} {4,14,15} {5,6,7}   {8,12,13} {9,10,11}
%e A350303   {1,2,3} {4,14,15} {5,6,7}   {8,9,13}  {10,11,12}
%e A350303   {1,2,3} {4,5,15}  {6,7,8}   {9,13,14} {10,11,12}
%e A350303 In the above, the numbers can be considered to be the partition of a 15-set into 5 blocks or the partition of the vertices of a convex 15-gon into 5 triangles with vertices labeled 1,2,...,15 in order.
%e A350303 a(2)=1820 corresponding to the number of ways to partition the vertices of a 16-gon into 4 triangles and one quadrilateral.
%t A350303 a[n_] := n*(n + 1)*(n + 2)*(n + 3)*(n + 11)*(n + 12)*(n + 13)*(n + 14)/2880; Array[a, 30, 0] (* _Amiram Eldar_, Dec 26 2021 *)
%Y A350303 Column k=5 of A350248.
%Y A350303 Cf. A350116.
%K A350303 easy,nonn
%O A350303 0,2
%A A350303 _Janaka Rodrigo_, Dec 24 2021