This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350305 #19 Jan 15 2023 15:10:04 %S A350305 1,1,13,1437,1884211,24657701475,3111336932350947, %T A350305 3710920324904591897521,41323213770479673319301068309, %U A350305 4261037235228828189774620497534270303,4045313784246510024420372971256850718016451185 %N A350305 a(n) is the constant term in the expansion of Product_{k=1..n} (x^k + 1 + 1/x^k)^n. %C A350305 a(n) is the coefficient of x^(n^2 * (n+1)/2) in Product_{k=0..n} (1 + x^k + x^(2*k))^n. %H A350305 Robert Israel, <a href="/A350305/b350305.txt">Table of n, a(n) for n = 0..44</a> %p A350305 f:= n -> coeff(mul(x^k+1+1/x^k,k=1..n)^n,x,0): %p A350305 map(f, [$0..12]); # _Robert Israel_, Jan 15 2023 %t A350305 a[n_] := Coefficient[Series[Product[(x^k + 1 + 1/x^k)^n, {k, 1, n}], {x, 0, 0}], x, 0]; Array[a, 11, 0] (* _Amiram Eldar_, Dec 24 2021 *) %o A350305 (PARI) a(n) = polcoef(prod(k=1, n, x^k+1+1/x^k)^n, 0); %o A350305 (PARI) a(n) = polcoef(prod(k=1, n, 1+x^k+x^(2*k))^n, n^2*(n+1)/2); %Y A350305 Cf. A007576, A156181, A225602, A350282, A350306, A350307. %K A350305 nonn %O A350305 0,3 %A A350305 _Seiichi Manyama_, Dec 23 2021