This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350312 #28 Feb 18 2022 21:03:03 %S A350312 0,1,10,11,101,110,111,1011,1101,1110,1111,10110,10111,11011,11101, %T A350312 11110,11111,101101,101110,101111,110110,110111,111011,111101,111110, %U A350312 111111,1011011,1011101,1011110,1011111,1101101,1101110,1101111,1110110,1110111,1111011 %N A350312 Narayana weighted representation of n (the bottom version). Also binary representation of numbers not containing 00 or 010 as a substring. %C A350312 a(n) equals binary representation of m, if and only if A350311(m) = n and for all k < m, A350311(k) < n. %H A350312 A.H.M. Smeets, <a href="/A350215/a350215.pdf">The design of greedy number representations</a> %F A350312 Regular expression: 0|11*(0111*)*(0|01|011*)?. %t A350312 q[n_] := SequenceCount[IntegerDigits[n, 2], #] & /@ {{0, 0}, {0, 1, 0}} == {0, 0}; bin[n_] := FromDigits[IntegerDigits[n, 2]]; bin /@ Select[Range[0, 120], q] (* _Amiram Eldar_, Jan 27 2022 *) %o A350312 (Python) # first method (as from definition) %o A350312 def A101(n): %o A350312 f0, f1, f2, r = 1, 1, 1, 0 %o A350312 while n > 0: %o A350312 if n%2 == 1: %o A350312 r = r+f0 %o A350312 n, f0, f1, f2 = n//2, f0+f2, f0, f1 %o A350312 return r %o A350312 n, a = 0, 0 %o A350312 while n < 36: %o A350312 if A101(a) == n: %o A350312 print(bin(a)[2:], end = ", ") %o A350312 n += 1 %o A350312 a += 1 %o A350312 (Python) # second method (as from regular expression) %o A350312 def test(n): %o A350312 s, i, n1 = bin(n)[2:], 0, 2 %o A350312 while i < len(s): %o A350312 if s[i] == "0": %o A350312 if n1 < 2: %o A350312 return 0 %o A350312 n1 = 0 %o A350312 else: %o A350312 n1 += 1 %o A350312 i += 1 %o A350312 return 1 %o A350312 n, a = 0, 0 %o A350312 while n < 36: %o A350312 if test(a): %o A350312 print(bin(a)[2:], end = ", ") %o A350312 n += 1 %o A350312 a += 1 %Y A350312 Cf. A000930, A048715, A350215 (top version), A350311. %Y A350312 Fibonacci representations: A014417 (Zeckendorf), A104326 (dual Zeckendorf). %K A350312 nonn,base %O A350312 0,3 %A A350312 _A.H.M. Smeets_, Dec 24 2021