This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350322 #26 Aug 01 2025 11:09:37 %S A350322 4,9,25,45,49,99,121,153,169,175,207,245,261,289,325,361,369,423,425, %T A350322 475,477,529,531,539,575,637,639,725,747,765,801,833,841,845,847,909, %U A350322 925,931,961,963,1017,1035,1075,1127,1175,1179,1233,1305,1325,1341,1369,1445,1475 %N A350322 Abelian orders m for which there exist exactly 2 groups of order m. %C A350322 Abelian orders of the form p^2 * q_1 * q_2 * ... * q_s, where p, q_1, q_2, ..., q_s are distinct primes such that p^2 !== 1 (mod q_j), q_i !== 1 (mod p_j), q_i !== 1 (mod q_j) for i != j. In this case there are 2^r groups of order m. %C A350322 Note that the smallest abelian order with precisely 2^n groups must be the square of a squarefree number. %C A350322 Except for a(1) = 4, all terms are odd. The terms that are divisible by 3 are of the form 9 * q_1 * q_2 * ... * q_s, where q_i are distinct primes congruent to 5 modulo 6, q_i !== 1 (mod q_j) for i != j. %H A350322 Jianing Song, <a href="/A350322/b350322.txt">Table of n, a(n) for n = 1..10000</a> %e A350322 For primes p, p^2 is a term since the 2 groups of that order are C_{p^2} and C_p X C_p. %e A350322 For primes p, q, if p^2 !== 1 (mod q) and q !== 1 (mod p), then p^2*q is a term since the 2 groups of that order are C_{p^2*q} and C_p X C_{p*q}. %o A350322 (PARI) isA054395(n) = { %o A350322 my(p=gcd(n, eulerphi(n)), f); %o A350322 if (!isprime(p), return(0)); %o A350322 if (n%p^2 == 0, return(1 == gcd(p+1, n))); %o A350322 f = factor(n); 1 == sum(k=1, matsize(f)[1], f[k, 1]%p==1); %o A350322 } \\ _Gheorghe Coserea_'s program for A054395 %o A350322 isA350322(n) = isA054395(n) && (bigomega(n)-omega(n)==1) %o A350322 (PARI) isA051532(n) = my(f=factor(n), v=vector(#f[, 1])); for(i=1, #v, if(f[i, 2]>2, return(0), v[i]=f[i, 1]^f[i, 2])); for(i=1, #v, for(j=i+1, #v, if(v[i]%f[j, 1]==1 || v[j]%f[i, 1]==1, return(0)))); 1 \\ _Charles R Greathouse IV_'s program for A051532 %o A350322 isA350322(n) = isA051532(n) && (bigomega(n)-omega(n)==1) %o A350322 (Python) %o A350322 def is_ok(m): %o A350322 f = factorint(m) %o A350322 return ( %o A350322 sum(f.values()) == len(f) + 1 and %o A350322 all((q - 1) % p > 0 for p in f for q in f) and %o A350322 (m := next(p for p, e in f.items() if e == 2) ** 2 - 1) and %o A350322 all(m % q > 0 for q in f)) # _David Radcliffe_, Jul 30 2025 %Y A350322 Equals A060687 INTERSECT A051532 = A054395 INTERSECT A051532 = A054395 INTERSECT A060687 = A054395 INTERSECT A013929. %Y A350322 Equals A350152 \ A350323. %Y A350322 Equals A054395 \ A350586. %Y A350322 Subsequence of A350152. %Y A350322 A001248 and A350332 are subsequences. %K A350322 nonn %O A350322 1,1 %A A350322 _Jianing Song_, Dec 25 2021