This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350336 #45 Jan 09 2022 22:22:14 %S A350336 1,3,56,7504,6832640,42780151808,1836366011301888, %T A350336 540795841280638713856,1092417949346109029345132544, %U A350336 15137179876232766647722798101823488,1438787206346713875314130065804001328234496,938091111277955250977701268973340995182098116509696 %N A350336 Number of n X n ternary matrices with no two adjacent 0's. %C A350336 A two-dimensional generalization of A028859. %C A350336 2^(n^2) < a(n) < 3^(n^2). %H A350336 Andrew Howroyd, <a href="/A350336/b350336.txt">Table of n, a(n) for n = 0..30</a> %e A350336 a(1) is trivial because all 3 1 X 1 matrices have no 2 adjacent 0's, whereas for a(2) the 56 matrices are: %e A350336 { %e A350336 {{0, 1}, {1, 0}}, {{0, 1}, {1, 1}}, %e A350336 {{0, 1}, {1, 2}}, {{0, 1}, {2, 0}}, %e A350336 {{0, 1}, {2, 1}}, {{0, 1}, {2, 2}}, %e A350336 {{0, 2}, {1, 0}}, {{0, 2}, {1, 1}}, %e A350336 {{0, 2}, {1, 2}}, {{0, 2}, {2, 0}}, %e A350336 {{0, 2}, {2, 1}}, {{0, 2}, {2, 2}}, %e A350336 {{1, 0}, {0, 1}}, {{1, 0}, {0, 2}}, %e A350336 {{1, 0}, {1, 1}}, {{1, 0}, {1, 2}}, %e A350336 {{1, 0}, {2, 1}}, {{1, 0}, {2, 2}}, %e A350336 {{1, 1}, {0, 1}}, {{1, 1}, {0, 2}}, %e A350336 {{1, 1}, {1, 0}}, {{1, 1}, {1, 1}}, %e A350336 {{1, 1}, {1, 2}}, {{1, 1}, {2, 0}}, %e A350336 {{1, 1}, {2, 1}}, {{1, 1}, {2, 2}}, %e A350336 {{1, 2}, {0, 1}}, {{1, 2}, {0, 2}}, %e A350336 {{1, 2}, {1, 0}}, {{1, 2}, {1, 1}}, %e A350336 {{1, 2}, {1, 2}}, {{1, 2}, {2, 0}}, %e A350336 {{1, 2}, {2, 1}}, {{1, 2}, {2, 2}}, %e A350336 {{2, 0}, {0, 1}}, {{2, 0}, {0, 2}}, %e A350336 {{2, 0}, {1, 1}}, {{2, 0}, {1, 2}}, %e A350336 {{2, 0}, {2, 1}}, {{2, 0}, {2, 2}}, %e A350336 {{2, 1}, {0, 1}}, {{2, 1}, {0, 2}}, %e A350336 {{2, 1}, {1, 0}}, {{2, 1}, {1, 1}}, %e A350336 {{2, 1}, {1, 2}}, {{2, 1}, {2, 0}}, %e A350336 {{2, 1}, {2, 1}}, {{2, 1}, {2, 2}}, %e A350336 {{2, 2}, {0, 1}}, {{2, 2}, {0, 2}}, %e A350336 {{2, 2}, {1, 0}}, {{2, 2}, {1, 1}}, %e A350336 {{2, 2}, {1, 2}}, {{2, 2}, {2, 0}}, %e A350336 {{2, 2}, {2, 1}}, {{2, 2}, {2, 2}} %e A350336 } %t A350336 t[m_] := t[m] = Map[ArrayReshape[#, {m, m}] &, Tuples[{0, 1, 2}, m^2]];a[m_] := a[m] = Count[Table[AnyTrue[Flatten[{Table[Equal[0, t[m][[n, a, b]], t[m][[n, a, b + 1]]], {a, 1, m}, {b, 1, m - 1}], Table[Equal[0, t[m][[n, a, b]], t[m][[n, a + 1, b]]], {a, 1, m - 1}, {b, 1, m}]}], TrueQ], {n, 1, 3^(m^2)}], False]; Table[a[n], {n, 1, 3}] %Y A350336 Cf. A006506 for binary version. %Y A350336 Cf. A028859 for one-dimensional version. %K A350336 nonn,hard %O A350336 0,2 %A A350336 _Robert P. P. McKone_, Jan 03 2022 %E A350336 Terms a(5)-a(11) from _Andrew Howroyd_, Jan 04 2022