A350343 Square numbers k that are abelian orders.
1, 4, 9, 25, 49, 121, 169, 289, 361, 529, 841, 961, 1225, 1369, 1681, 1849, 2209, 2809, 3481, 3721, 4225, 4489, 5041, 5329, 5929, 6241, 6889, 7225, 7921, 9409, 10201, 10609, 11449, 11881, 12769, 13225, 14161, 16129, 17161, 17689, 18769, 19321, 20449, 22201, 22801
Offset: 1
Keywords
Examples
For primes p, p^2 is a term since every group of order p^2 is abelian. Such group is isomorphic to either C_{p^2} or C_p X C_p. For primes p, q, if p^2 !== 1 (mod q), q^2 !== 1 (mod p), then p^2*q^2 is a term since every group of that order is abelian. Such group is isomorphic to C_{p^2*q^2}, C_p X C_{p*q^2}, C_q X C_{p^2*q} or C_{p*q} X C_{p*q}.
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
PARI
isA051532(n) = my(f=factor(n), v=vector(#f[, 1])); for(i=1, #v, if(f[i, 2]>2, return(0), v[i]=f[i, 1]^f[i, 2])); for(i=1, #v, for(j=i+1, #v, if(v[i]%f[j, 1]==1 || v[j]%f[i, 1]==1, return(0)))); 1 \\ Charles R Greathouse IV's program for A051532 isA350343(n) = issquare(n) && isA051532(n)
Formula
a(n) = A350342(n)^2.
Comments