A350344 Composite k such that k^2 is an abelian order.
35, 65, 77, 85, 115, 119, 133, 143, 161, 185, 187, 209, 215, 217, 221, 235, 247, 259, 265, 299, 319, 323, 329, 335, 341, 365, 371, 377, 391, 403, 407, 413, 415, 427, 437, 451, 469, 481, 485, 493, 511, 515, 517, 527, 533, 535, 551, 553, 559, 565, 583, 589, 595
Offset: 1
Keywords
Examples
For primes p, q, if p^2 !== 1 (mod q), q^2 !== 1 (mod p), then p*q is a term since every group of that order is abelian. Such group is isomorphic to C_{p^2*q^2}, C_p X C_{p*q^2}, C_q X C_{p^2*q} or C_{p*q} X C_{p*q}. 95 is not a term since 95^2 = 5^2 * 19^2 is not an abelian order. Note that 95 itself is a cyclic number.
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
Programs
-
PARI
isA051532(n) = my(f=factor(n), v=vector(#f[, 1])); for(i=1, #v, if(f[i, 2]>2, return(0), v[i]=f[i, 1]^f[i, 2])); for(i=1, #v, for(j=i+1, #v, if(v[i]%f[j, 1]==1 || v[j]%f[i, 1]==1, return(0)))); 1 \\ Charles R Greathouse IV's program for A051532 isA350344(n) = (n>1) && !isprime(n) && isA051532(n^2)
Formula
A350345(n) = a(n)^2.
Comments