cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350348 Lexicographically earliest sequence of distinct positive integers such that the Hankel matrix of any odd number of consecutive terms is invertible.

This page as a plain text file.
%I A350348 #12 May 22 2024 09:19:51
%S A350348 1,2,3,4,6,5,7,8,9,10,12,11,13,14,16,15,17,18,19,20,22,21,23,24,25,26,
%T A350348 29,27,28,30,31,32,33,35,34,36,37,38,39,41,40,42,44,43,45,46,47,48,50,
%U A350348 49,51,52,53,54,56,57,55,58,59,60,61,63,62,64,65,66,67
%N A350348 Lexicographically earliest sequence of distinct positive integers such that the Hankel matrix of any odd number of consecutive terms is invertible.
%C A350348 From _Robert Israel_, May 19 2024: (Start)
%C A350348 Given a(1),...,a(n-1), the determinant of the Hankel matrix of [a(n-2*k), ..., a(n-1), x] is of the form A*x + B where A is the determinant of the Hankel matrix of [a(n-2*k), ..., a(n-2)].  Thus if A <> 0 there is only one x that makes this determinant 0.  For a(n) there are at most n-1+ceil(n/2) "prohibited" values, namely a(1) to a(n-1) and ceil(n/2) values that make Hankel determinants 0.  We conclude that a(n) always exists and a(n) <= 3*n/2. (End)
%H A350348 Robert Israel, <a href="/A350348/b350348.txt">Table of n, a(n) for n = 1..750</a>
%H A350348 Wikipedia, <a href="https://en.wikipedia.org/wiki/Hankel_matrix">Hankel matrix</a>
%p A350348 with(LinearAlgebra):
%p A350348 R:= [1]: S:= {1};
%p A350348 for i from 2 to 100 do
%p A350348   for y from 1 do
%p A350348     if member(y,S) then next fi;
%p A350348     found:= false;
%p A350348     for j from i-2 to 1 by -2 do if Determinant(HankelMatrix([op(R[j..i-1]),y]))=0 then found:= true; break fi od;
%p A350348     if not found then break fi;
%p A350348   od;
%p A350348   R:= [op(R),y];
%p A350348   S:= S union {y};
%p A350348 od:
%p A350348 R; # _Robert Israel_, May 19 2024
%o A350348 (Python)
%o A350348 from sympy import Matrix
%o A350348 from itertools import count
%o A350348 def A350348_list(nmax):
%o A350348     a=[]
%o A350348     for n in range(nmax):
%o A350348         a.append(next(k for k in count(1) if k not in a and all(Matrix((n-r)//2+1,(n-r)//2+1,lambda i,j:(a[r:]+[k])[i+j]).det()!=0 for r in range(n-2,-1,-2))))
%o A350348     return a
%Y A350348 Cf. A350330, A350349, A350350.
%K A350348 nonn
%O A350348 1,2
%A A350348 _Pontus von Brömssen_, Dec 26 2021