This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350348 #12 May 22 2024 09:19:51 %S A350348 1,2,3,4,6,5,7,8,9,10,12,11,13,14,16,15,17,18,19,20,22,21,23,24,25,26, %T A350348 29,27,28,30,31,32,33,35,34,36,37,38,39,41,40,42,44,43,45,46,47,48,50, %U A350348 49,51,52,53,54,56,57,55,58,59,60,61,63,62,64,65,66,67 %N A350348 Lexicographically earliest sequence of distinct positive integers such that the Hankel matrix of any odd number of consecutive terms is invertible. %C A350348 From _Robert Israel_, May 19 2024: (Start) %C A350348 Given a(1),...,a(n-1), the determinant of the Hankel matrix of [a(n-2*k), ..., a(n-1), x] is of the form A*x + B where A is the determinant of the Hankel matrix of [a(n-2*k), ..., a(n-2)]. Thus if A <> 0 there is only one x that makes this determinant 0. For a(n) there are at most n-1+ceil(n/2) "prohibited" values, namely a(1) to a(n-1) and ceil(n/2) values that make Hankel determinants 0. We conclude that a(n) always exists and a(n) <= 3*n/2. (End) %H A350348 Robert Israel, <a href="/A350348/b350348.txt">Table of n, a(n) for n = 1..750</a> %H A350348 Wikipedia, <a href="https://en.wikipedia.org/wiki/Hankel_matrix">Hankel matrix</a> %p A350348 with(LinearAlgebra): %p A350348 R:= [1]: S:= {1}; %p A350348 for i from 2 to 100 do %p A350348 for y from 1 do %p A350348 if member(y,S) then next fi; %p A350348 found:= false; %p A350348 for j from i-2 to 1 by -2 do if Determinant(HankelMatrix([op(R[j..i-1]),y]))=0 then found:= true; break fi od; %p A350348 if not found then break fi; %p A350348 od; %p A350348 R:= [op(R),y]; %p A350348 S:= S union {y}; %p A350348 od: %p A350348 R; # _Robert Israel_, May 19 2024 %o A350348 (Python) %o A350348 from sympy import Matrix %o A350348 from itertools import count %o A350348 def A350348_list(nmax): %o A350348 a=[] %o A350348 for n in range(nmax): %o A350348 a.append(next(k for k in count(1) if k not in a and all(Matrix((n-r)//2+1,(n-r)//2+1,lambda i,j:(a[r:]+[k])[i+j]).det()!=0 for r in range(n-2,-1,-2)))) %o A350348 return a %Y A350348 Cf. A350330, A350349, A350350. %K A350348 nonn %O A350348 1,2 %A A350348 _Pontus von Brömssen_, Dec 26 2021