This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350352 #22 Sep 11 2024 22:49:00 %S A350352 30,42,66,70,78,102,105,110,114,130,138,154,165,170,174,182,186,190, %T A350352 195,210,222,230,231,238,246,255,258,266,273,282,285,286,290,310,318, %U A350352 322,330,345,354,357,366,370,374,385,390,399,402,406,410,418,426,429,430 %N A350352 Products of three or more distinct prime numbers. %C A350352 First differs from A336568 in lacking 420. %H A350352 Michael De Vlieger, <a href="/A350352/b350352.txt">Table of n, a(n) for n = 1..10000</a> %e A350352 The terms and their prime indices begin: %e A350352 30: {1,2,3} 182: {1,4,6} 285: {2,3,8} %e A350352 42: {1,2,4} 186: {1,2,11} 286: {1,5,6} %e A350352 66: {1,2,5} 190: {1,3,8} 290: {1,3,10} %e A350352 70: {1,3,4} 195: {2,3,6} 310: {1,3,11} %e A350352 78: {1,2,6} 210: {1,2,3,4} 318: {1,2,16} %e A350352 102: {1,2,7} 222: {1,2,12} 322: {1,4,9} %e A350352 105: {2,3,4} 230: {1,3,9} 330: {1,2,3,5} %e A350352 110: {1,3,5} 231: {2,4,5} 345: {2,3,9} %e A350352 114: {1,2,8} 238: {1,4,7} 354: {1,2,17} %e A350352 130: {1,3,6} 246: {1,2,13} 357: {2,4,7} %e A350352 138: {1,2,9} 255: {2,3,7} 366: {1,2,18} %e A350352 154: {1,4,5} 258: {1,2,14} 370: {1,3,12} %e A350352 165: {2,3,5} 266: {1,4,8} 374: {1,5,7} %e A350352 170: {1,3,7} 273: {2,4,6} 385: {3,4,5} %e A350352 174: {1,2,10} 282: {1,2,15} 390: {1,2,3,6} %t A350352 Select[Range[100],SquareFreeQ[#]&&PrimeOmega[#]>=3&] %o A350352 (Python) %o A350352 from sympy import factorint %o A350352 def ok(n): f = factorint(n, multiple=True); return len(f) == len(set(f)) > 2 %o A350352 print([k for k in range(431) if ok(k)]) # _Michael S. Branicky_, Jan 14 2022 %o A350352 (Python) %o A350352 from math import isqrt, prod %o A350352 from sympy import primerange, integer_nthroot, primepi %o A350352 def A350352(n): %o A350352 def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1))) %o A350352 def f(x): return int(n+x-sum(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,i)) for i in range(3,x.bit_length()))) %o A350352 def bisection(f,kmin=0,kmax=1): %o A350352 while f(kmax) > kmax: kmax <<= 1 %o A350352 while kmax-kmin > 1: %o A350352 kmid = kmax+kmin>>1 %o A350352 if f(kmid) <= kmid: %o A350352 kmax = kmid %o A350352 else: %o A350352 kmin = kmid %o A350352 return kmax %o A350352 return bisection(f,n,n) # _Chai Wah Wu_, Sep 11 2024 %o A350352 (PARI) is(n,f=factor(n))=my(e=f[,2]); #e>2 && vecmax(e)==1 \\ _Charles R Greathouse IV_, Jul 08 2022 %o A350352 (PARI) list(lim)=my(v=List()); forsquarefree(n=30,lim\1, if(#n[2][,2]>2, listput(v,n[1]))); Vec(v) \\ _Charles R Greathouse IV_, Jul 08 2022 %Y A350352 This is the squarefree case of A033942. %Y A350352 Including squarefree semiprimes gives A120944. %Y A350352 The squarefree complement consists of 1 and A167171. %Y A350352 These are the Heinz numbers of the partitions counted by A347548. %Y A350352 A000040 lists prime numbers (exactly 1 prime factor). %Y A350352 A005117 lists squarefree numbers. %Y A350352 A006881 lists squarefree numbers with exactly 2 prime factors. %Y A350352 A007304 lists squarefree numbers with exactly 3 prime factors. %Y A350352 A046386 lists squarefree numbers with exactly 4 prime factors. %Y A350352 Cf. A000009, A000111, A001250, A002808, A027383, A349796. %K A350352 nonn %O A350352 1,1 %A A350352 _Gus Wiseman_, Jan 11 2022