This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350353 #8 Jan 18 2022 05:56:28 %S A350353 30,36,42,60,66,70,72,78,84,90,100,102,105,108,110,114,120,126,130, %T A350353 132,138,140,144,150,154,156,165,168,170,174,180,182,186,190,195,196, %U A350353 198,200,204,210,216,220,222,225,228,230,231,234,238,240,246,252,255,258 %N A350353 Numbers whose multiset of prime factors has a permutation that is not weakly alternating. %C A350353 We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either. %e A350353 The terms together with a (generally not unique) non-weakly alternating permutation of each multiset of prime indices begin: %e A350353 30 : (1,2,3) 100 : (1,3,3,1) %e A350353 36 : (1,2,2,1) 102 : (1,2,7) %e A350353 42 : (1,2,4) 105 : (2,3,4) %e A350353 60 : (1,1,2,3) 108 : (1,2,2,1,2) %e A350353 66 : (1,2,5) 110 : (1,3,5) %e A350353 70 : (1,3,4) 114 : (1,2,8) %e A350353 72 : (1,1,2,2,1) 120 : (1,1,1,2,3) %e A350353 78 : (1,2,6) 126 : (1,2,4,2) %e A350353 84 : (1,1,2,4) 130 : (1,3,6) %e A350353 90 : (1,2,3,2) 132 : (1,1,2,5) %t A350353 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A350353 whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}]; %t A350353 Select[Range[100],Select[Permutations[primeMS[#]],!whkQ[#]&&!whkQ[-#]&]!={}&] %Y A350353 The strong version is A289553, complement A167171. %Y A350353 These are the positions of nonzero terms in A349797. %Y A350353 Below, WA = "weakly alternating": %Y A350353 - WA compositions are counted by A349052/A129852/A129853. %Y A350353 - Non-WA compositions are counted by A349053, ranked by A349057. %Y A350353 - WA permutations of prime factors = A349056, complement A349797. %Y A350353 - WA patterns are counted by A349058, complement A350138. %Y A350353 - WA ordered factorizations are counted by A349059, complement A350139. %Y A350353 - WA partitions are counted by A349060, complement A349061. %Y A350353 A001250 counts alternating permutations, complement A348615. %Y A350353 A008480 counts permutations of prime factors. %Y A350353 A025047 = alternating compositions, ranked by A345167, complement A345192. %Y A350353 A056239 adds up prime indices, row sums of A112798 (row lengths A001222). %Y A350353 A071321 gives the alternating sum of prime factors, reverse A071322. %Y A350353 A335452 counts anti-run permutations of prime factors, complement A336107. %Y A350353 A345164 = alternating permutations of prime factors, complement A350251. %Y A350353 Cf. A003242, A335433, A335448, A344652, A344653, A345171, A345172, A345173, A348379, A348613, A349798, A350252, A349800. %K A350353 nonn %O A350353 1,1 %A A350353 _Gus Wiseman_, Jan 13 2022