cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350357 Irregular triangle read by rows in which row n lists all elements of the arrangement of the correspondence divisor/part related to the last section of the set of partitions of n in the following order: row n lists the n-th row of A138121 followed by the n-th row of A336812.

This page as a plain text file.
%I A350357 #51 Jan 18 2022 06:08:10
%S A350357 1,1,2,1,1,2,3,1,1,1,3,1,4,2,2,1,1,1,1,2,4,1,2,1,5,3,2,1,1,1,1,1,1,5,
%T A350357 1,3,1,2,1,1,6,3,3,4,2,2,2,2,1,1,1,1,1,1,1,1,2,3,6,1,2,4,1,3,1,2,1,2,
%U A350357 1,1,7,4,3,5,2,3,2,2,1,1,1,1,1,1,1,1,1,1,1
%N A350357 Irregular triangle read by rows in which row n lists all elements of the arrangement of the correspondence divisor/part related to the last section of the set of partitions of n in the following order: row n lists the n-th row of A138121 followed by the n-th row of A336812.
%e A350357 Triangle begins:
%e A350357 [1], [1];
%e A350357 [2, 1], [1, 2];
%e A350357 [3, 1, 1], [1, 3, 1];
%e A350357 [4, 2, 2, 1, 1, 1], [1, 2, 4, 1, 2, 1];
%e A350357 [5, 3, 2, 1, 1, 1, 1, 1], [1, 5, 1, 3, 1, 2, 1, 1];
%e A350357 ...
%e A350357 Illustration of the first six rows of triangle in an infinite table:
%e A350357 |---|---------|-----|-------|---------|-----------|-------------|---------------|
%e A350357 | n |         |  1  |   2   |    3    |     4     |      5      |       6       |
%e A350357 |---|---------|-----|-------|---------|-----------|-------------|---------------|
%e A350357 |   |         |     |       |         |           |             |  6            |
%e A350357 |   |         |     |       |         |           |             |  3 3          |
%e A350357 |   |         |     |       |         |           |             |  4 2          |
%e A350357 | P |         |     |       |         |           |             |  2 2 2        |
%e A350357 | A |         |     |       |         |           |  5          |    1          |
%e A350357 | R |         |     |       |         |           |  3 2        |      1        |
%e A350357 | T |         |     |       |         |  4        |    1        |      1        |
%e A350357 | S |         |     |       |         |  2 2      |      1      |        1      |
%e A350357 |   |         |     |       |  3      |    1      |      1      |        1      |
%e A350357 |   |         |     |  2    |    1    |      1    |        1    |          1    |
%e A350357 |   |         |  1  |    1  |      1  |        1  |          1  |            1  |
%e A350357 |---|---------|-----|-------|---------|-----------|-------------|---------------|
%e A350357 | D | A027750 |  1  |  1 2  |  1   3  |  1 2   4  |  1       5  |  1 2 3     6  |
%e A350357 | I | A027750 |     |       |  1      |  1 2      |  1   3      |  1 2   4      |
%e A350357 | V | A027750 |     |       |         |  1        |  1 2        |  1   3        |
%e A350357 | I | A027750 |     |       |         |           |  1          |  1 2          |
%e A350357 | S | A027750 |     |       |         |           |  1          |  1 2          |
%e A350357 | O | A027750 |     |       |         |           |             |  1            |
%e A350357 | R | A027750 |     |       |         |           |             |  1            |
%e A350357 | S |         |     |       |         |           |             |               |
%e A350357 |---|---------|-----|-------|---------|-----------|-------------|---------------|
%e A350357 .
%e A350357 For n = 6 in the upper zone of the above table we can see the parts of the last section of the set of partitions of 6 in reverse-colexicographic order in accordance with the 6th row of A138121.
%e A350357 In the lower zone of the table we can see the terms from the 6th row of A336812, these are the divisors of the numbers from the 6th row of A336811.
%e A350357 Note that in the lower zone of the table every row gives A027750.
%e A350357 The remarkable fact is that the elements in the lower zone of the arrangement are the same as the elements in the upper zone but in other order.
%e A350357 For an explanation of the connection of the elements of the upper zone with the elements of the lower zone, that is the correspondence divisor/part, see A336812 and A338156.
%e A350357 The growth of the upper zone of the table is in accordance with the growth of the modular prism described in A221529.
%e A350357 The growth of the lower zone of the table is in accordance with the growth of the tower described also in A221529.
%e A350357 The number of cubic cells added at n-th stage in each polycube is equal to A138879(10) = 150, hence the total number of cubic cells added at n-th stage is equal to 2*A138879(10) = 300, equaling the sum of the 10th row of this triangle.
%Y A350357 Companion of A350333.
%Y A350357 Row sums give 2*A138879.
%Y A350357 Row lengths give 2*A138137.
%Y A350357 Cf. A002865, A135010, A138121, A138879, A221529, A237593, A336812, A339278.
%K A350357 nonn,tabf
%O A350357 1,3
%A A350357 _Omar E. Pol_, Dec 26 2021