This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350380 #16 Dec 29 2021 02:21:26 %S A350380 1,1,2,1,3,1,2,2,1,5,1,2,3,1,1,7,1,2,2,2,1,3,3,1,2,5,1,1,11,1,2,3,2,1, %T A350380 1,1,13,1,2,7,1,1,3,5,1,1,2,2,2,2,1,17,1,2,3,1,3,1,1,19,1,2,2,5,1,1,1, %U A350380 3,7,1,1,2,11,1,1,23,1,2,3,2,1,2,1,1,1,5,5,1,2,13,1 %N A350380 Triangle read by rows in which row n lists A014963(d), the exponential of Mangoldt function, for each divisor d of n. %H A350380 Michel Marcus, <a href="/A350380/b350380.txt">Table of n, a(n) for n = 1..10006</a> (rows 1 to 1358, flattened). %F A350380 a(n) = A014963(A027750(n)). %e A350380 Triangle begins: %e A350380 1; %e A350380 1, 2; %e A350380 1, 3; %e A350380 1, 2, 2; %e A350380 1, 5; %e A350380 1, 2, 3, 1; %e A350380 1, 7; %e A350380 1, 2, 2, 2; %e A350380 1, 3, 3; %e A350380 1, 2, 5, 1; %e A350380 ... %t A350380 Table[Exp[MangoldtLambda[Divisors[n]]], {n, 1, 26}] // Flatten (* _Amiram Eldar_, Dec 28 2021 *) %o A350380 (PARI) M(n) = ispower(n, , &n); if(isprime(n), n, 1); \\ A014963 %o A350380 row(n) = apply(M, divisors(n)); %Y A350380 Cf. A014963, A027750. %Y A350380 Cf. A000027 (row products), A140255 (row sums). %K A350380 nonn,tabf %O A350380 1,3 %A A350380 _Michel Marcus_, Dec 28 2021, following a suggestion from _Charles Kusniec_