cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350387 a(n) is the sum of the odd exponents in the prime factorization of n.

This page as a plain text file.
%I A350387 #17 Oct 07 2023 09:51:07
%S A350387 0,1,1,0,1,2,1,3,0,2,1,1,1,2,2,0,1,1,1,1,2,2,1,4,0,2,3,1,1,3,1,5,2,2,
%T A350387 2,0,1,2,2,4,1,3,1,1,1,2,1,1,0,1,2,1,1,4,2,4,2,2,1,2,1,2,1,0,2,3,1,1,
%U A350387 2,3,1,3,1,2,1,1,2,3,1,1,0,2,1,2,2,2,2,4,1,2,2,1,2,2,2,6,1,1,1,0,1,3,1,4,3
%N A350387 a(n) is the sum of the odd exponents in the prime factorization of n.
%C A350387 First differs from A125073 at n = 32.
%C A350387 a(n) is the number of prime divisors of n, counted with multiplicity, with an odd exponent in the prime factorization of n.
%H A350387 Amiram Eldar, <a href="/A350387/b350387.txt">Table of n, a(n) for n = 1..10000</a>
%F A350387 Additive with a(p^e) = e if e is odd and 0 otherwise.
%F A350387 a(n) = A001222(A350389(n)).
%F A350387 a(n) = 0 if and only if n is a positive square (A000290 \ {0}).
%F A350387 a(n) = A001222(n) - A350386(n).
%F A350387 a(n) = A001222(n) if and only if n is an exponentially odd number (A268335).
%F A350387 Sum_{k=1..n} a(k) = n * log(log(n)) + c * n + O(n/log(n)), where c = A083342 - Sum_{p prime} 2*p/((p-1)*(p+1)^2) = gamma + Sum_{p prime} (log(1-1/p) + (p^2+1)/((p-1)*(p+1)^2)) = 0.2384832800... and gamma is Euler's constant (A001620).
%t A350387 f[p_, e_] := If[OddQ[e], e, 0]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A350387 (Python)
%o A350387 from sympy import factorint
%o A350387 def a(n): return sum(e for e in factorint(n).values() if e%2 == 1)
%o A350387 print([a(n) for n in range(1, 106)]) # _Michael S. Branicky_, Dec 28 2021
%o A350387 (PARI) a(n) = my(f=factor(n)); sum(k=1, #f~, if (f[k,2] %2, f[k,2])); \\ _Michel Marcus_, Dec 28 2021
%Y A350387 Cf. A000290, A001222, A001620, A083342, A125073, A162641, A268335, A350386, A350389.
%K A350387 nonn,easy
%O A350387 1,6
%A A350387 _Amiram Eldar_, Dec 28 2021