This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350388 #22 Jun 01 2025 03:24:34 %S A350388 1,1,1,4,1,1,1,1,9,1,1,4,1,1,1,16,1,9,1,4,1,1,1,1,25,1,1,4,1,1,1,1,1, %T A350388 1,1,36,1,1,1,1,1,1,1,4,9,1,1,16,49,25,1,4,1,1,1,1,1,1,1,4,1,1,9,64,1, %U A350388 1,1,4,1,1,1,9,1,1,25,4,1,1,1,16,81,1,1,4 %N A350388 a(n) is the largest unitary divisor of n that is a square. %C A350388 First differs from A056623 at n = 32. %H A350388 Amiram Eldar, <a href="/A350388/b350388.txt">Table of n, a(n) for n = 1..10000</a> %F A350388 Multiplicative with a(p^e) = p^e if e is even and 1 otherwise. %F A350388 a(n) = n/A350389(n). %F A350388 a(n) = A071974(n)^2. %F A350388 a(n) = A008833(n) if and only if n is in A335275. %F A350388 A001222(a(n)) = A350386(n). %F A350388 a(n) = 1 if and only if n is an exponentially odd number (A268335). %F A350388 a(n) = n if and only if n is a positive square (A000290 \ {0}). %F A350388 Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = (1/3) * Product_{p prime} (1 + sqrt(p)/(1 + p + p^2)) = 0.59317173657411718128... [updated Oct 16 2022] %F A350388 Dirichlet g.f.: zeta(2*s-2) * zeta(2*s) * Product_{p prime} (1 + 1/p^s - 1/p^(2*s) - 1/p^(3*s-2)). - _Amiram Eldar_, Oct 01 2023 %F A350388 Sum_{d|n, gcd(d, n/d) == 1} A076479(d) * a(n/d) = A191414(sqrt(n)) if n is a square, and 0 otherwise. - _Amiram Eldar_, Jun 01 2025 %t A350388 f[p_, e_] := If[EvenQ[e], p^e, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] %o A350388 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%2, 1, f[i,1]^f[i,2]));} \\ _Amiram Eldar_, Oct 01 2023 %Y A350388 Cf. A000290, A001222, A008833, A056623, A071974, A076479, A191414, A268335, A335275, A350386, A350389. %K A350388 nonn,easy,mult %O A350388 1,4 %A A350388 _Amiram Eldar_, Dec 28 2021