A350390 a(n) is the largest exponentially odd divisor of n.
1, 2, 3, 2, 5, 6, 7, 8, 3, 10, 11, 6, 13, 14, 15, 8, 17, 6, 19, 10, 21, 22, 23, 24, 5, 26, 27, 14, 29, 30, 31, 32, 33, 34, 35, 6, 37, 38, 39, 40, 41, 42, 43, 22, 15, 46, 47, 24, 7, 10, 51, 26, 53, 54, 55, 56, 57, 58, 59, 30, 61, 62, 21, 32, 65, 66, 67, 34, 69
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := If[OddQ[e], p^e, p^(e - 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^(f[i,2] - !(f[i,2]%2)));} \\ Amiram Eldar, Sep 18 2023
-
Python
from math import prod from sympy.ntheory.factor_ import primefactors, core def A350390(n): return n*core(n)//prod(primefactors(n)) # Chai Wah Wu, Dec 30 2021
Formula
Multiplicative with a(p^e) = p^e if e is odd and p^(e-1) otherwise.
a(n) = n/A336643(n).
a(n) = n if and only if n is an exponentially odd number (A268335).
Sum_{k=1..n} a(k) ~ (1/2)*c*n^2, where c = Product_{p prime} 1-(p-1)/(p^2*(p+1)) = 0.8073308216... (A306071).
Dirichlet g.f.: zeta(2*s-2) * Product_{p prime} (1 + 1/p^(s-1) - 1/p^(2*s-2) + 1/p^(2*s-1)). - Amiram Eldar, Sep 18 2023
Comments