This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350398 #8 Dec 30 2021 07:27:46 %S A350398 1,3,4,6,7,8,9,10,11,12,13,14,15,16,21,24,30,31,34,36,42,45,49,63 %N A350398 Numbers k such that for all pairs of primes p,q with p+q = 2*k, p*q mod 2*k is prime. %C A350398 a(25) > 10^6 if it exists. %C A350398 Numbers k such that A350399(k) = A002375(k). %e A350398 a(5) = 7 is a term because 2*7 = 14 = 3+11 = 7+7, with 3*11 == 5 (mod 14) and 7*7 == 7 (mod 14), and both 5 and 7 are prime. %e A350398 5 is not a term because 2*5 = 10 = 3+7 = 5+5, but 3*7 == 1 (mod 10) and 1 is not prime. %p A350398 filter:= proc(k) local p; %p A350398 p:= 1; %p A350398 while p <= k do %p A350398 p:= nextprime(p); %p A350398 if isprime(2*k-p) and not isprime(-p^2 mod 2*k) then return false fi %p A350398 od; %p A350398 true %p A350398 end proc: %p A350398 select(filter, [$1..1000]); %t A350398 q[k_] := AllTrue[Select[Range[2, 2*k], PrimeQ], ! PrimeQ[2*k - #] || PrimeQ[Mod[#*(2*k - #), 2*k]] &]; Select[Range[100], q] (* _Amiram Eldar_, Dec 28 2021 *) %Y A350398 Cf. A002375, A350399. %K A350398 nonn,more %O A350398 1,2 %A A350398 _J. M. Bergot_ and _Robert Israel_, Dec 28 2021