This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350401 #12 Dec 30 2021 17:32:23 %S A350401 3,5,7,11,13,23,29,31,53,59,71,73,83,89,101,107,109,127,137,149,163, %T A350401 173,181,191,193,211,223,227,233,239,257,271,277,281,283,307,317,367, %U A350401 373,389,409,419,431,449,461,463,467,479,491,509,521,523,547,577,587,593,607,613,631,641,643,653,659 %N A350401 Primes p such that if q is the next prime, p*q mod (A004086(p)+A004086(q)) is prime. %H A350401 Robert Israel, <a href="/A350401/b350401.txt">Table of n, a(n) for n = 1..10000</a> %e A350401 a(6) = 23 is a member because it is prime, the next prime is 29, and 23*29 mod (32+92) = 667 mod 124 = 47 is prime. %p A350401 revdigs:= proc(n) local L,i,m; %p A350401 L:= convert(n,base,10); m:= nops(L); %p A350401 add(L[i]*10^(m-i),i=1..m) %p A350401 end proc: %p A350401 q:= 2: qr:= 2: %p A350401 R:= NULL: count:= 0: %p A350401 while count < 100 do %p A350401 p:=q; pr:= qr; %p A350401 q:= nextprime(p); qr:= revdigs(q); s:= p*q mod (pr+qr); %p A350401 if isprime(s) then %p A350401 R:= R, p; count:= count+1; %p A350401 fi %p A350401 od: %p A350401 R; %Y A350401 Cf. A004086. %K A350401 nonn,base %O A350401 1,1 %A A350401 _J. M. Bergot_ and _Robert Israel_, Dec 28 2021