A350429 Prime numbers p for which there exists at least one integer k < p such that p divides the k-th Bell number.
5, 7, 13, 19, 23, 29, 37, 47, 53, 61, 67, 71, 73, 89, 101, 107, 131, 137, 139, 157, 163, 167, 173, 179, 181, 191, 193, 211, 223, 239, 241, 251, 271, 277, 281, 283, 293, 307, 311, 313, 331, 349, 353, 367, 401, 419, 431, 433, 439, 443, 449, 467, 491, 499, 509, 541
Offset: 1
Keywords
Examples
a(1)=5 since modulo 5 we have B(0)=1, B(1)=1, B(2)=2, and B(3)=0.
Links
- I. E. Shparlinskiy, On the Distribution of Values of Recurring Sequences and the Bell Numbers in Finite Fields, European Journal of Combinatorics, Vol. 12, No. 1 (1991), pp. 81-87.
Programs
-
Mathematica
q[p_] := Module[{k = 1}, While[k < p && ! Divisible[BellB[k], p], k++]; k < p]; Select[Range[500], PrimeQ[#] && q[#] &] (* Amiram Eldar, Dec 30 2021 *)
Comments