This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350439 #16 Jan 11 2022 22:05:18 %S A350439 0,0,1,2,3,9,12,20,35,58,116,180,329,560,970,1742,2933,5213,8954, %T A350439 15627,27340,47171,82661,143054,249474,434167,754011,1314511,2282754, %U A350439 3975774,6914639,12026735,20933900,36399440,63351409,110191798,191708837,333553521,580209879 %N A350439 a(n) is the number of integers that can be represented in a 7-segment display by using only n segments (version A063720). %C A350439 The integers are displayed as in A063720, where the negative integers are depicted by using 1 segment more for the minus sign. %C A350439 Since the integer 0 is depicted by 6 segments, in order to avoid considering -0 in the case n = 7, a(7) is obtained by decreasing of a unit the result of the sum A343314(7) + A343314(6) = 16 + 5 = 21, i.e., a(7) = 21 - 1 = 20. %H A350439 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,1,1,5,1,1). %H A350439 <a href="/index/Ca#calculatordisplay">Index entries for sequences related to calculator display</a> %H A350439 <a href="/index/Com#comp">Index entries for sequences related to compositions</a> %F A350439 a(7) = 20, otherwise a(n) = A343314(n) + A343314(n-1). %F A350439 G.f.: x^2*(1 + 2*x + 2*x^2 + 6*x^3 + 6*x^4 + x^5 - x^7 - x^8 - 5*x^9 - x^10 - x^11)/(1 - x^2 - x^3 - x^4 - 5*x^5 - x^6 - x^7). %F A350439 a(n) = a(n-2) + a(n-3) + a(n-4) + 5*a(n-5) + a(n-6) + a(n-7) for n > 13. %e A350439 a(7) = 20 since -111, -77, -41, -14, 8, 12, 13, 15, 16, 19, 21, 31, 47, 51, 61, 74, 91, 117, 171 and 711 are displayed by 7 segments. %e A350439 __ __ __ %e A350439 __ | | | __ | | __ |__| | __ | |__| |__| %e A350439 | | | | | | | | | |__| %e A350439 (-111) (-77) (-41) (-14) (8) %e A350439 __ __ __ __ __ %e A350439 | __| | __| | |__ | |__ | |__| __| | %e A350439 | |__ | __| | __| | |__| | | |__ | %e A350439 (12) (13) (15) (16) (19) (21) %e A350439 __ __ __ __ %e A350439 __| | |__| | |__ | |__ | | |__| %e A350439 __| | | | __| | |__| | | | %e A350439 (31) (47) (51) (61) (74) %e A350439 __ __ __ __ %e A350439 |__| | | | | | | | | | | %e A350439 | | | | | | | | | | | %e A350439 (91) (117) (171) (711) %t A350439 P[x_]:=x^2+x^3+x^4+5x^5+x^6+x^7; c[n_]:=Coefficient[Sum[P[x]^k, {k, Max[1, Ceiling[n/7]], Floor[n/2]}], x, n]; b[n_]:=c[n]-c[n-6]; (* A343314 *) %t A350439 a[n_]:=If[n!=7,b[n]+b[n-1],20];Array[a, 39, 0] %Y A350439 Cf. A063720, A343314. %K A350439 nonn,base,easy %O A350439 0,4 %A A350439 _Stefano Spezia_, Dec 31 2021