This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350441 #26 Feb 06 2022 23:08:11 %S A350441 2,5,12,35,75,182,828,1002,1063,2168,6345,6920,10054,14444,51465 %N A350441 Numbers m such that 4^m reversed is prime. %C A350441 From _Bernard Schott_, Jan 30 2022: (Start) %C A350441 If m is a term, then u = 2*m is a term of A057708, because 4^m = 2^(2*m). In fact, terms of this sequence here are half the even terms of A057708. %C A350441 If m is a term that is multiple of 3, then k = 2*m/3 is a term of A350442, because 4^m = 8^(2m/3). First examples: m = 12, 75, 828, 1002, 6345, 51465, ... and corresponding k = 8, 50, 552, 668, 4230, 34310, ... (End) %t A350441 Select[Range[2200], PrimeQ[IntegerReverse[4^#]] &] (* _Amiram Eldar_, Dec 31 2021 *) %o A350441 (PARI) isok(m) = isprime(fromdigits(Vecrev(digits(4^m)))) %o A350441 (Python) %o A350441 from sympy import isprime %o A350441 m = 4 %o A350441 for n in range (1, 2000): %o A350441 if isprime(int(str(m)[::-1])): %o A350441 print(n) %o A350441 m *= 4 %Y A350441 Cf. A058996, A071582. %Y A350441 Cf. Numbers m such that k^m reversed is prime: A057708 (k=2), this sequence (k=4), A058993 (k=5), A058994 (k=7), A350442 (k=8), A058995 (k=13). %K A350441 nonn,base,more %O A350441 1,1 %A A350441 _Mohammed Yaseen_, Dec 31 2021 %E A350441 a(11)-a(15) from _Amiram Eldar_, Dec 31 2021