This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350455 #25 Jan 04 2022 18:29:11 %S A350455 4,9,15,21,25,35,33,49,39,55,65,77,51,91,57,85,121,95,119,143,69,133, %T A350455 169,115,187,161,209,221,87,247,93,145,253,289,155,203,299,323,217, %U A350455 361,111,319,391,185,341,377,437,123,259,403,129,205,493,529,215,287,407 %N A350455 T(n,k) is the k-th semiprime whose sum of prime factors equals 2n, triangle T(n,k), n>=2, 1<=k<=A045917(n), read by rows. %C A350455 Assuming Goldbach's conjecture, no row is empty. %H A350455 Alois P. Heinz, <a href="/A350455/b350455.txt">Rows n = 2..1000, flattened</a> %H A350455 Wikipedia, <a href="https://en.wikipedia.org/wiki/Goldbach%27s_conjecture">Goldbach's conjecture</a> %e A350455 Triangle T(n,k) begins: %e A350455 4; %e A350455 9; %e A350455 15; %e A350455 21, 25; %e A350455 35 ; %e A350455 33, 49; %e A350455 39, 55; %e A350455 65, 77; %e A350455 51, 91; %e A350455 57, 85, 121; %e A350455 95, 119, 143; %e A350455 69, 133, 169; %e A350455 115, 187 ; %e A350455 161, 209, 221; %e A350455 87, 247 ; %e A350455 93, 145, 253, 289; %e A350455 155, 203, 299, 323; %e A350455 ... %p A350455 T:= n-> seq(`if`(andmap(isprime, [h, 2*n-h]), h*(2*n-h), [][]), h=2..n): %p A350455 seq(T(n), n=2..30); %Y A350455 Column k=1 gives A073046. %Y A350455 Last elements of rows give A102084. %Y A350455 Row sums give A228553. %Y A350455 Row products give A337568. %Y A350455 Row lengths give A045917. %Y A350455 Cf. A000040, A001358, A046315, A350419. %K A350455 nonn,look,tabf %O A350455 2,1 %A A350455 _Alois P. Heinz_, Dec 31 2021