A350458 Chronological Julian day number of the first day (Tishri 1, Rosh Hashanah) of Hebrew calendar year n.
347998, 348353, 348708, 349091, 349445, 349800, 350185, 350539, 350922, 351277, 351631, 352014, 352369, 352723, 353108, 353461, 353815, 354200, 354555, 354938, 355292, 355647, 356030, 356385, 356739, 357124, 357477, 357861, 358216, 358571, 358954, 359308, 359663
Offset: 1
Examples
For Hebrew year n=3 (3759 BC), m(3) = 24, j(3) = 348707, k(3) = 348708, k(2) = 348353, k(3) - k(2) = 355, k(4) = 349091, k(4) - k(3) = 383, a(3) = k(3) = 348708. Year 3 AM had 383 days and began on weekday 3 (Thursday). JDN 348708 = 3759-Sep-17 BC (Julian proleptic). For Hebrew year n=5782 (AD 2021), m(5782) = 71501, j(5782) = 2459465, k(5782) = 2459465, k(5781) = 2459112, k(5783) = 2459849, a(5782) = k(5782) = 2459465. Year 5782 AM has 384 days and began on weekday 1 (Tuesday). JDN 2459465 = 2021-Sep-7 AD (Gregorian).
References
- Louis A. Resnikoff, Jewish Calendar Calculations, Scripta Mathematica 9 (1943) 191-195, 274-277.
- Edward Graham Richards, Mapping Time, Oxford University, London, 1998. Chapters 17 and 26.
Links
- E. G. Richards, Collected algorithms from Mapping Time. The Calendar and Its History, Oxford University Press, 1998/1999.
- P. K. Seidelman, Explanatory Supplement 1992, The Hebrew Calendar.
- Wikibooks, Mathematics of the Jewish Calendar.
- Wikipedia, Hebrew calendar.
- Wikipedia, Hebrew calendar - New Year months.
- Wikipedia, Julian day
- Index entries for sequences related to calendars
Programs
-
Mathematica
m[n_] := Floor[(n*235 - 234)/19]; j[n_] := 347998 + Floor[(765433*m[n] + 12084)/25920]; k[n_] := j[n] + Mod[Floor[j[n]*6/7], 2]; a[n_] := If[k[n+1] - (kn = k[n]) == 356, kn+2, If[kn - k[n-1] == 382, kn+1, kn]]; Array[a, 30] (* Amiram Eldar, Jan 01 2022 *)
Formula
m(n) = floor((n*235 - 234)/19) = number of lunations since 0001-Tishri-1
j(n) = 347998 + floor((765433*m(n) + 12084)/25920) = JDN of lunation #m(n)
k(n) = j(n) + (floor(j(n)*6/7) mod 2) (delay to avoid Wed, Fri, Sun)
a(n) = k(n) + 2 if k(n+1) - k(n) = 356 (delay to avoid 356-day year)
= k(n) + 1 if k(n) - k(n-1) = 382 (delay to avoid 382-day year)
= k(n) otherwise
The delays to avoid 356-day and 382-day years occur about once in every 30.2 and 185.7 years, respectively.
Comments