This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350461 #59 May 14 2022 19:50:40 %S A350461 1,2,18,260,5110,126252,3743124,129156456,5075323110,223484406860, %T A350461 10889720208796,581327564001912,33721264023340348,2111076358455927800, %U A350461 141812884019465389800,10171645727323281955920,775654703427461395949190,62649431136582816113115660 %N A350461 Number of ways to choose a subset of size n from [2n] and arrange its elements into a set of lists. %H A350461 Alois P. Heinz, <a href="/A350461/b350461.txt">Table of n, a(n) for n = 0..361</a> %F A350461 a(n) = binomial(2*n,n) * A000262(n) = A000984(n) * A000262(n). %F A350461 a(n) = A129652(2n,n). %e A350461 a(2) = 18: 12, 21, 1|2, 13, 31, 1|3, 14, 41, 1|4, 23, 32, 2|3, 24, 42, 2|4, 34, 43, 3|4. %p A350461 b:= proc(n) option remember; `if`(n=0, 1, add( %p A350461 b(n-j)*binomial(n-1, j-1)*j!, j=1..n)) %p A350461 end: %p A350461 a:= n-> binomial(2*n, n)*b(n): %p A350461 seq(a(n), n=0..20); %t A350461 a[n_] := If[n==0, 1, ((2n)!/n!) Sum[Binomial[n-1, j]/(j+1)!, {j, 0, n-1}]]; %t A350461 Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, May 14 2022, from 1st formula *) %Y A350461 Cf. A000262, A000984, A129652. %K A350461 nonn %O A350461 0,2 %A A350461 _Alois P. Heinz_, Feb 22 2022