This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350464 #7 Apr 09 2022 14:40:42 %S A350464 1,0,1,0,1,3,0,2,15,15,0,6,91,210,105,0,6,690,2835,3150,945,0,30,5214, %T A350464 42405,79695,51975,10395,0,20,44772,666666,2057055,2207205,945945, %U A350464 135135,0,140,384756,11274900,54879825,90090000,62432370,18918900,2027025 %N A350464 Table read by rows. Interpolating the swinging factorial (A056040) and the double factorial (A001147). %F A350464 The partial Bell polynomials Y_{2*n, k}(Z) applied to the list Z of the aerated swinging factorials (A056040). %e A350464 Triangle starts: %e A350464 [0] 1; %e A350464 [1] 0, 1; %e A350464 [2] 0, 1, 3; %e A350464 [3] 0, 2, 15, 15; %e A350464 [4] 0, 6, 91, 210, 105; %e A350464 [5] 0, 6, 690, 2835, 3150, 945; %e A350464 [6] 0, 30, 5214, 42405, 79695, 51975, 10395; %e A350464 [7] 0, 20, 44772, 666666, 2057055, 2207205, 945945, 135135; %t A350464 Swing[n_] := n! / Floor[n/2]!^2; %t A350464 Z[n_] := Flatten[Table[{0, Swing[j]}, {j, 0, n}]]; %t A350464 T[n_, k_] := BellY[2 n, k, Z[n - k]]; %t A350464 Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten %Y A350464 Cf. A350465 (row sums), A350466 (alternating row sums). %Y A350464 Cf. A056040, A001147, A001880. %K A350464 nonn,tabl %O A350464 0,6 %A A350464 _Peter Luschny_, Mar 13 2022