cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350464 Table read by rows. Interpolating the swinging factorial (A056040) and the double factorial (A001147).

This page as a plain text file.
%I A350464 #7 Apr 09 2022 14:40:42
%S A350464 1,0,1,0,1,3,0,2,15,15,0,6,91,210,105,0,6,690,2835,3150,945,0,30,5214,
%T A350464 42405,79695,51975,10395,0,20,44772,666666,2057055,2207205,945945,
%U A350464 135135,0,140,384756,11274900,54879825,90090000,62432370,18918900,2027025
%N A350464 Table read by rows. Interpolating the swinging factorial (A056040) and the double factorial (A001147).
%F A350464 The partial Bell polynomials Y_{2*n, k}(Z) applied to the list Z of the aerated swinging factorials (A056040).
%e A350464 Triangle starts:
%e A350464 [0] 1;
%e A350464 [1] 0,  1;
%e A350464 [2] 0,  1,   3;
%e A350464 [3] 0,  2,   15,     15;
%e A350464 [4] 0,  6,   91,     210,     105;
%e A350464 [5] 0,  6,   690,    2835,    3150,     945;
%e A350464 [6] 0,  30,  5214,   42405,   79695,    51975,    10395;
%e A350464 [7] 0,  20,  44772,  666666,  2057055,  2207205,  945945,  135135;
%t A350464 Swing[n_] := n! / Floor[n/2]!^2;
%t A350464 Z[n_] := Flatten[Table[{0, Swing[j]}, {j, 0, n}]];
%t A350464 T[n_, k_] := BellY[2 n, k, Z[n - k]];
%t A350464 Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
%Y A350464 Cf. A350465 (row sums), A350466 (alternating row sums).
%Y A350464 Cf. A056040, A001147, A001880.
%K A350464 nonn,tabl
%O A350464 0,6
%A A350464 _Peter Luschny_, Mar 13 2022