This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350467 #17 Jan 08 2024 08:28:02 %S A350467 1,1,5,13,89,341,2653,13021,110449,648469,5891381,39734685,382729801, %T A350467 2887493077,29287115341,242592910621,2577978650081,23125601566165, %U A350467 256460946182821,2465492129670493,28441473938165561,290630718826209301,3477967327342044989,37528922270996471133 %N A350467 a(n) = hypergeom([1/2 - n/2, -n/2], [-n], -8*n). %F A350467 a(n) = Sum_{k=0..n} binomial(n - k, k)*(2*n)^k. %F A350467 a(n) = A350470(n, n). %F A350467 From _Vaclav Kotesovec_, Jan 08 2024: (Start) %F A350467 a(n) = ((1 + sqrt(8*n+1))^(n+1) - (1 - sqrt(8*n+1))^(n+1)) / (sqrt(8*n+1) * 2^(n+1)). %F A350467 a(n) ~ exp(sqrt(n/2)/2) * 2^(n/2 - 1) * n^(n/2) * (1 + 47/(96*sqrt(2*n))). (End) %t A350467 Table[Hypergeometric2F1[(1 - n)/2, -n/2, -n, -8 n ], {n, 0, 23}] %t A350467 Table[FullSimplify[((1 + Sqrt[8*n + 1])^(n+1) - (1 - Sqrt[8*n + 1])^(n+1)) / (Sqrt[8*n + 1] * 2^(n+1))], {n, 0, 25}] (* _Vaclav Kotesovec_, Jan 08 2024 *) %Y A350467 Cf. A171180, A350470. %K A350467 nonn %O A350467 0,3 %A A350467 _Peter Luschny_, Mar 19 2022