cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350470 Array read by ascending antidiagonals. T(n, k) = J(k, n) where J are the Jacobsthal polynomials.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 5, 1, 1, 1, 7, 9, 11, 1, 1, 1, 9, 13, 29, 21, 1, 1, 1, 11, 17, 55, 65, 43, 1, 1, 1, 13, 21, 89, 133, 181, 85, 1, 1, 1, 15, 25, 131, 225, 463, 441, 171, 1, 1, 1, 17, 29, 181, 341, 937, 1261, 1165, 341, 1
Offset: 0

Views

Author

Peter Luschny, Mar 19 2022

Keywords

Examples

			Array starts:
n\k 0, 1,  2,  3,   4,    5,    6,     7,      8,      9, ...
---------------------------------------------------------------------
[0] 1, 1,  1,  1,   1,    1,    1,     1,      1,      1, ... A000012
[1] 1, 1,  3,  5,  11,   21,   43,    85,    171,    341, ... A001045
[2] 1, 1,  5,  9,  29,   65,  181,   441,   1165,   2929, ... A006131
[3] 1, 1,  7, 13,  55,  133,  463,  1261,   4039,  11605, ... A015441
[4] 1, 1,  9, 17,  89,  225,  937,  2737,  10233,  32129, ... A015443
[5] 1, 1, 11, 21, 131,  341, 1651,  5061,  21571,  72181, ... A015446
[6] 1, 1, 13, 25, 181,  481, 2653,  8425,  40261, 141361, ... A053404
[7] 1, 1, 15, 29, 239,  645, 3991, 13021,  68895, 251189, ... A350468
[8] 1, 1, 17, 33, 305,  833, 5713, 19041, 110449, 415105, ... A168579
[9] 1, 1, 19, 37, 379, 1045, 7867, 26677, 168283, 648469, ... A350469
      A005408 | A082108 |
           A016813   A014641
		

Crossrefs

Cf. A350467 (main diagonal), A352361 (Fibonacci polynomials), A352362 (Lucas polynomials).

Programs

  • Maple
    J := (n, x) -> add(2^k*binomial(n - k, k)*x^k, k = 0..n):
    seq(seq(J(k, n-k), k = 0..n), n = 0..10);
  • Mathematica
    T[n_, k_] := Hypergeometric2F1[(1 - k)/2, -k/2, -k, -8 n];
    Table[T[n, k], {n, 0, 9}, {k, 0, 9}] // TableForm
    (* or *)
    T[n_, k_] := With[{s = Sqrt[8*n+1]}, ((1+s)^(k+1) - (1-s)^(k+1)) / (2^(k+1)*s)];
    Table[Simplify[T[n, k]], {n, 0, 9}, {k, 0, 9}] // TableForm
  • PARI
    T(n, k) = ([1, 2; k, 0]^n)[1, 1] ;
    export(T)
    for(k = 0, 9, print(parvector(10, n, T(n - 1, k))))

Formula

T(n, k) = Sum_{j=0..k} binomial(k - j, j)*(2*n)^j.
T(n, k) = ((1+s)^(k+1) - (1-s)^(k+1)) / (2^(k+1)*s) where s = sqrt(8*n + 1).
T(n, k) = [x^k] (1 / (1 - x - 2*n*x^2)).
T(n, k) = hypergeom([1/2 - k/2, -k/2], [-k], -8*n).