This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350495 #61 Feb 05 2022 05:41:21 %S A350495 1,2,4,8,16,40,88,222,570,1564,4516,13874,41866,137432,442964,1492610, %T A350495 4998674,17204844,59175316,207299554,727137516,2582078416,9179001124, %U A350495 32943918428,118453240846,428937325964,1556421977612,5676923326262,20754245720206 %N A350495 a(n) is the constant term in expansion of Product_{k=1..n} (x^(k^2) + 1/x^(k^2))^2. %H A350495 Vaclav Kotesovec, <a href="/A350495/b350495.txt">Table of n, a(n) for n = 0..200</a> %F A350495 Conjecture: a(n) ~ sqrt(5) * 4^n / (sqrt(Pi) * n^(5/2)). - _Vaclav Kotesovec_, Feb 05 2022 %p A350495 b:= proc(n) option remember; `if`(n=0, 1, %p A350495 expand((x^(n^2)+1/x^(n^2))^2*b(n-1))) %p A350495 end: %p A350495 a:= n-> coeff(b(n),x,0): %p A350495 seq(a(n), n=0..28); # _Alois P. Heinz_, Jan 28 2022 %t A350495 Table[Coefficient[Product[(x^(k^2) + 1/x^(k^2))^2, {k, 1, n}], x, 0], {n, 0, 30}] (* _Vaclav Kotesovec_, Feb 05 2022 *) %Y A350495 Cf. A000980, A047653, A158092, A350249, A350881. %K A350495 nonn %O A350495 0,2 %A A350495 _Ilya Gutkovskiy_, Jan 28 2022