cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350498 Convolution of triangular numbers with every third number of Narayana's Cows sequence.

This page as a plain text file.
%I A350498 #33 Aug 17 2022 07:10:44
%S A350498 0,1,7,31,114,385,1250,3987,12619,39810,125425,394955,1243433,3914383,
%T A350498 12322293,38789576,122105944,384377494,1209981891,3808901216,
%U A350498 11990036895,37743426054,118812495000,374009739009,1177344897390,3706162867858,11666626518622,36725362368682,115607732787126,363921470561515
%N A350498 Convolution of triangular numbers with every third number of Narayana's Cows sequence.
%C A350498 This is the convolution of N(3*n-1) with t(n); in other words, a(n) = Sum_{i=1..n} N(3*i-1)*t(n-i) where N(k)=A000930(k) is the k-th number in Narayana's Cows sequence and t(k)=A000217(k) is the k-th triangular number.
%D A350498 G. Dresden and M. Tulskikh, "Convolutions of Sequences with Single-Term Signature Differences", preprint.
%H A350498 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (7,-18,23,-16,6,-1).
%F A350498 a(n) = N(3*n-1) - A000217(n) where N(k)=A000930(k).
%F A350498 G.f.: x^2/((1 - x)^3 * (1 - 4*x + 3*x^2 - x^3)).
%F A350498 a(n) = A052529(n)-A000217(n), n>0. - _R. J. Mathar_, Aug 17 2022
%e A350498 For n=4, a(4) = N(2)*t(3) + N(5)*t(2) + N(8)*t(1) + N(11)*t(0) = 1*6 + 4*3 + 13*1 + 41*0 = 31, where N(k)=A000930(k) and t(k)=A000217(k).
%t A350498 CoefficientList[
%t A350498 Series[x/((-1 + x)^3 (-1 + 4 x - 3 x^2 + x^3)), {x, 0, 30}], x]
%Y A350498 Cf. A000217, A000930.
%K A350498 nonn,easy
%O A350498 1,3
%A A350498 _Greg Dresden_, Jan 04 2022