This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350500 #17 Feb 02 2025 14:42:15 %S A350500 36,120,144,204,216,300,396,624,696,924,1044,1140,1200,1644,1656,1764, %T A350500 2124,2184,2604,2856,3216,3240,3444,3744,3756,3900,4056,4164,4224, %U A350500 4536,4620,4764,5184,5316,5460,5580,5604,6000,6240,6504,6516,6744,7116,7344,7836,7860,8004 %N A350500 Even numbers that are both the sum of a twin prime pair and the sum of 1 and a semiprime. %H A350500 Harvey P. Dale, <a href="/A350500/b350500.txt">Table of n, a(n) for n = 1..1000</a> %e A350500 36 is in the sequence since 36 = 17+19 = 1+35. %e A350500 120 is in the sequence since 120 = 59+61 = 1+119. %t A350500 Select[12 * Range[700], And @@ PrimeQ[#/2 + {-1, 1}] && PrimeOmega[# - 1] == 2 &] (* _Amiram Eldar_, Jan 02 2022 *) %t A350500 Select[Total/@Select[Partition[Prime[Range[600]],2,1],#[[2]]-#[[1]]==2&],PrimeOmega[#-1]==2&] (* _Harvey P. Dale_, Feb 02 2025 *) %o A350500 (Python) %o A350500 from sympy import isprime, factorint %o A350500 def ok(n): return n%2 == 0 and isprime(n//2-1) and isprime(n//2+1) and sum(factorint(n-1).values()) == 2 %o A350500 print([k for k in range(8005) if ok(k)]) # _Michael S. Branicky_, Jan 02 2022 %Y A350500 Intersection of A054735 and A088707. %Y A350500 Cf. A349757. %K A350500 nonn %O A350500 1,1 %A A350500 _Wesley Ivan Hurt_, Jan 01 2022