cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350501 Table read by antidiagonals: T(n,k) (n >= 3, k >= 0) is the number of vertices in a regular n-gon after k generations of mitosis.

This page as a plain text file.
%I A350501 #19 Jan 05 2024 12:56:38
%S A350501 3,3,4,3,5,5,3,5,10,6,3,5,15,19,7,3,5,20,25,42,8,3,5,25,25,119,57,9,3,
%T A350501 5,30,25,231,81,135,10,3,5,35,25,378,81,504,171,11,3,5,40,25,560,81,
%U A350501 1017,311,341,12,3,5,45,25,777,81,1620,361,1309,313,13
%N A350501 Table read by antidiagonals: T(n,k) (n >= 3, k >= 0) is the number of vertices in a regular n-gon after k generations of mitosis.
%C A350501 See A350000 for further details and images of the n-gons.
%H A350501 Scott R. Shannon, <a href="/A350501/a350501_5.png">Illustration of T(10,1)</a>.
%H A350501 Scott R. Shannon, <a href="/A350501/a350501_4.png">Illustration of T(10,2)</a>.
%H A350501 Scott R. Shannon, <a href="/A350501/a350501.png">Illustration of T(10,3)</a>.
%H A350501 Scott R. Shannon, <a href="/A350501/a350501_3.png">Illustration of T(11,1)</a>.
%H A350501 Scott R. Shannon, <a href="/A350501/a350501_2.png">Illustration of T(11,2)</a>.
%H A350501 Scott R. Shannon, <a href="/A350501/a350501_1.png">Illustration of T(11,3)</a>.
%e A350501 The table begins:
%e A350501 .
%e A350501       |               Number of vertices after k generations
%e A350501   n\k |  0,    1,     2,     3,     4,      5,      6,      7,      8,      9, ...
%e A350501 ----------------------------------------------------------------------------------
%e A350501    3  |  3,    3,     3,     3,     3,      3,      3,      3,      3,      3, ...
%e A350501    4  |  4,    5,     5,     5,     5,      5,      5,      5,      5,      5, ...
%e A350501    5  |  5,   10,    15,    20,    25,     30,     35,     40,     45,     50, ...
%e A350501    6  |  6,   19,    25,    25,    25,     25,     25,     25,     25,     25, ...
%e A350501    7  |  7,   42,   119,   231,   378,    560,    777,   1029,   1316,   1638, ...
%e A350501    8  |  8,   57,    81,    81,    81,     81,     81,     81,     81,     81, ...
%e A350501    9  |  9,  135,   504,  1017,  1620,   2313,   3096,   3969,   4932,   5985, ...
%e A350501   10  | 10,  171,   311,   361,   411,    461,    511,    561,    611,    661, ...
%e A350501   11  | 11,  341,  1309,  2629,  4169,   5929,   7909,  10109,  12529,   1516, ...
%e A350501   12  | 12,  313,   481,   481,   481,    481,    481,    481,    481,    481, ...
%e A350501   13  | 13,  728,  3601,  8125, 13624,  20098,  27547,  35971,  45370,  55744, ...
%e A350501   14  | 14,  771,  1639,  2129,  2619,   3109,   3599,   4089,   4579,   5069, ...
%e A350501   15  | 15, 1380,  5985, 13125, 22185,  32970,  45480,  59715,  75675,  93360, ...
%e A350501   16  | 16, 1393,  3329,  4257,  4897,   5537,   6177,   6817,   7457,   8097, ...
%e A350501   17  | 17, 2397, 12070, 28628, 50558,  77758, 110228, 147968, 190978, 239258, ...
%e A350501   18  | 18, 1855,  4033,  5815,  7363,   8713,  10063,  11413,  12763,  14113, ...
%e A350501   19  | 19, 3895, 19418, 44992, 77786, 117800, 165034, 219488, 281162, 350056, ...
%e A350501   20  | 20, 3861, 11261, 16641, 20741,  24841,  28941,  33041,  37141,  41241, ...
%e A350501   21  | 21, 6006, 26019, 55734, 92484, 136269, 187089, 244944, 309834, 381759, ...
%e A350501   22  | 22, 5963, 18107, 27413, 34343,  41273,  48203,  55133,  62063,  68993, ...
%e A350501 .
%Y A350501 Cf. A350000 (n-gons), A350502 (edges), A007569 (column 1), A349967 (column 2), A331450, A349968.
%K A350501 nonn,tabl
%O A350501 3,1
%A A350501 _Scott R. Shannon_ and _N. J. A. Sloane_, Jan 01 2022