This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350516 #64 Mar 15 2022 02:59:25 %S A350516 5,97,443,5801,42697,7813639,10303967,1225192093 %N A350516 a(n) is the least k>1 such that omega(k) is equal to (omega(n*k + 1) - 1)/n. %C A350516 Are all terms prime numbers? %C A350516 a(9) <= 14567138141, a(10) <= 5509396663871, a(11) <= 4128894057139, a(12) <= 13264466350165447, a(13) <= 6115610326638653. - _Daniel Suteu_, Mar 14 2022 %e A350516 a(2) = 97 because omega(97) = (omega(2*97 + 1) - 1)/2 = (omega(3*5*13) - 1)/2 = 1. %t A350516 a[n_] := Module[{k = 2}, While[PrimeNu[k] != (PrimeNu[n*k + 1] - 1)/n, k++]; k]; Array[a, 5] (* _Amiram Eldar_, Mar 09 2022 *) %o A350516 (PARI) a(n) = my(k=2); while (omega(k) != (omega(n*k + 1) - 1)/n, k++); k; \\ _Michel Marcus_, Mar 09 2022 %o A350516 (Python) %o A350516 from sympy import factorint %o A350516 for n in range(1, 8): %o A350516 for k in range(2, 10**10): %o A350516 if len(factorint(k).keys())*n+1==len(factorint(k*n+1).keys()): %o A350516 print(n, k) %o A350516 break # _Martin Ehrenstein_, Mar 14 2022 %Y A350516 Cf. A001221 (omega). %K A350516 nonn,more %O A350516 1,1 %A A350516 _Juri-Stepan Gerasimov_, Mar 09 2022 %E A350516 a(8) from _Martin Ehrenstein_, Mar 14 2022