This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350519 #28 Apr 22 2025 19:11:59 %S A350519 3,13,63,325,1719,9237,50199,275149,1518263,8422961,46935819, %T A350519 262512929,1472854451,8285893713,46723439019,264009961733, %U A350519 1494486641911,8473508472009,48112827862527,273541139290857,1557023508876891,8872219429659729,50605041681538595,288897992799897481 %N A350519 a(n) = A(n,n) where A(1,n) = A(n,1) = prime(n+1) and A(m,n) = A(m-1,n) + A(m,n-1) + A(m-1,n-1) for m > 1 and n > 1. %C A350519 Replacing prime(n+1) by other functions f(n) we can get many other sequences. For example, with f(n) = 1 we get A001850. %e A350519 The two-dimensional recurrence A(m,n) can be depicted in matrix form as %e A350519 3 5 7 11 13 17 19 ... %e A350519 5 13 25 43 67 97 133 ... %e A350519 7 25 63 131 241 405 635 ... %e A350519 11 43 131 325 697 1343 2383 ... %e A350519 13 67 241 697 1719 3759 7485 ... %e A350519 17 97 405 1343 3759 9237 20481 ... %e A350519 19 133 635 2383 7485 20481 50199 ... %e A350519 ... %e A350519 and then a(n) is the main diagonal of this matrix, A(n,n). %t A350519 f[1,1]=3;f[m_,1]:=Prime[m+1];f[1,n_]:=Prime[n+1];f[m_,n_]:=f[m,n]=f[m-1,n]+f[m,n-1]+f[m-1,n-1];Table[f[n,n],{n,25}] (* _Giorgos Kalogeropoulos_, Jan 03 2022 *) %o A350519 (MATLAB) %o A350519 clear all %o A350519 close all %o A350519 sz = 14 %o A350519 f = zeros(sz,sz); %o A350519 pp = primes(50); %o A350519 f(1,:) = pp(2:end); %o A350519 f(:,1) = pp(2:end); %o A350519 for m=2:sz %o A350519 for n=2:sz %o A350519 f(m,n) = f(m-1,n-1)+f(m,n-1)+f(m-1,n); %o A350519 end %o A350519 end %o A350519 an = [] %o A350519 for n=1:sz %o A350519 an = [an f(n,n)]; %o A350519 end %o A350519 S = sprintf('%i,',an); %o A350519 S = S(1:end-1) %Y A350519 Cf. A000040, A001850, A002002, A050151, A344576 (see comments). %K A350519 nonn %O A350519 1,1 %A A350519 _Yigit Oktar_, Jan 02 2022