This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350523 #21 Jan 29 2022 10:29:00 %S A350523 2,3,23,67,227,10331 %N A350523 Prime numbers p such that K(p) = 0! + 1! + ... + (p-1)! == -2 (mod p). %C A350523 The Kurepa Conjecture says that K(p) is nonzero in F_p, the finite field with p elements. Primes for which K(p) takes some fixed nonzero value in F_p might have some interest. %C A350523 No further terms < 6*10^6. - _Michael S. Branicky_, Jan 03 2022 %H A350523 Vladica Andrejić, Alin Bostan and Milos Tatarevic, <a href="https://doi.org/10.1016/j.ipl.2020.106078">Improved algorithms for left factorial residues</a>, Information Processing Letters, Vol. 167 (2021), Article ID 106078, 4 p.; <a href="https://arxiv.org/abs/1904.09196">arXiv preprint</a>, arXiv:1904.09196 [math.NT], 2019-2020. %t A350523 q[p_] := PrimeQ[p] && Divisible[Sum[k!, {k, 0, p - 1}] + 2, p]; Select[Range[230], q] (* _Amiram Eldar_, Jan 03 2022 *) %o A350523 (Python) %o A350523 from sympy import isprime %o A350523 def K(n): %o A350523 ans, f = 0, 1 %o A350523 for i in range(1, n+1): %o A350523 ans += f%n %o A350523 f = (f*i)%n %o A350523 return ans%n %o A350523 def ok(n): return isprime(n) and (K(n) + 2)%n == 0 %o A350523 print([k for k in range(11000) if ok(k)]) # _Michael S. Branicky_, Jan 03 2022 %o A350523 (Python) # faster version for initial segment of sequence %o A350523 from sympy import isprime %o A350523 def afind(limit): %o A350523 f = 1 # (p-1)! %o A350523 s = 2 # sum(0! + 1! + ... + (p-1)!) %o A350523 for p in range(2, limit+1): %o A350523 if isprime(p) and s%p == p-2: %o A350523 print(p, end=", ") %o A350523 s += f*p %o A350523 f *= p %o A350523 afind(11000) # _Michael S. Branicky_, Jan 03 2022 %Y A350523 Cf. A003422, A100612. %Y A350523 Subsequence of A236400. %K A350523 nonn,more %O A350523 1,1 %A A350523 _Luis H. Gallardo_, Jan 03 2022