This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350528 #11 Jan 12 2022 21:40:21 %S A350528 1,1,1,4,3,1,23,19,6,1,181,155,55,10,1,1812,1591,600,125,15,1,22037, %T A350528 19705,7756,1750,245,21,1,315569,286091,116214,27741,4270,434,28,1, %U A350528 5201602,4766823,1983745,493794,81291,9198,714,36,1 %N A350528 Triangle read by rows: T(n,k) is the number of labeled quasi-threshold graphs on vertex set [n] with k components, for n >= 1 and 1 <= k <= n. %C A350528 The family of quasi-threshold graphs is the smallest family of graphs that contains K_1 (a single vertex), and is closed under taking unions and adding dominating vertices (adjacent to all other vertices). %H A350528 D. Galvin, G. Wesley and B. Zacovic, <a href="https://arxiv.org/abs/2110.08953">Enumerating threshold graphs and some related graph classes</a>, arXiv:2110.08953 [math.CO], 2021. %F A350528 T(n,k) = Sum_{j=1..n} (-1)^(n-j)*Stirling2(n, j)*k*binomial(j, k)*j^(j-k-1) for n >= 1, 1 <= k <= n. %e A350528 Triangle begins: %e A350528 1; %e A350528 1, 1; %e A350528 4, 3, 1; %e A350528 23, 19, 6, 1; %e A350528 181, 155, 55, 10, 1; %e A350528 1812, 1591, 600, 125, 15, 1; %e A350528 22037, 19705, 7756, 1750, 245, 21, 1; %e A350528 315569, 286091; 116214, 27741, 4270, 434, 28, 1; %e A350528 ... %t A350528 T[n_, k_] := T[n, k] = Sum[((-1)^(n - j))*StirlingS2[n, j]*k*Binomial[j, k]*(j^(j - k - 1)), {j, 1, n}]; Table[T[n, k], {n, 1, 12}, {k, 1, n}] %Y A350528 First column is A058863. %Y A350528 Row sums are A058864. %Y A350528 Cf. A008277. %K A350528 nonn,tabl %O A350528 1,4 %A A350528 _David Galvin_, Jan 03 2022