cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350528 Triangle read by rows: T(n,k) is the number of labeled quasi-threshold graphs on vertex set [n] with k components, for n >= 1 and 1 <= k <= n.

This page as a plain text file.
%I A350528 #11 Jan 12 2022 21:40:21
%S A350528 1,1,1,4,3,1,23,19,6,1,181,155,55,10,1,1812,1591,600,125,15,1,22037,
%T A350528 19705,7756,1750,245,21,1,315569,286091,116214,27741,4270,434,28,1,
%U A350528 5201602,4766823,1983745,493794,81291,9198,714,36,1
%N A350528 Triangle read by rows: T(n,k) is the number of labeled quasi-threshold graphs on vertex set [n] with k components, for n >= 1 and 1 <= k <= n.
%C A350528 The family of quasi-threshold graphs is the smallest family of graphs that contains K_1 (a single vertex), and is closed under taking unions and adding dominating vertices (adjacent to all other vertices).
%H A350528 D. Galvin, G. Wesley and B. Zacovic, <a href="https://arxiv.org/abs/2110.08953">Enumerating threshold graphs and some related graph classes</a>, arXiv:2110.08953 [math.CO], 2021.
%F A350528 T(n,k) = Sum_{j=1..n} (-1)^(n-j)*Stirling2(n, j)*k*binomial(j, k)*j^(j-k-1) for n >= 1, 1 <= k <= n.
%e A350528 Triangle begins:
%e A350528        1;
%e A350528        1,      1;
%e A350528        4,      3,      1;
%e A350528       23,     19,      6,      1;
%e A350528      181,    155,     55,     10,     1;
%e A350528     1812,   1591,    600,    125,    15,    1;
%e A350528    22037,  19705,   7756,   1750,   245,   21,   1;
%e A350528   315569, 286091; 116214,  27741,  4270,  434,  28,  1;
%e A350528   ...
%t A350528 T[n_, k_] := T[n, k] = Sum[((-1)^(n - j))*StirlingS2[n, j]*k*Binomial[j, k]*(j^(j - k - 1)), {j, 1, n}]; Table[T[n, k], {n, 1, 12}, {k, 1, n}]
%Y A350528 First column is A058863.
%Y A350528 Row sums are A058864.
%Y A350528 Cf. A008277.
%K A350528 nonn,tabl
%O A350528 1,4
%A A350528 _David Galvin_, Jan 03 2022