This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350530 #13 Jan 13 2022 02:32:26 %S A350530 1,1,0,1,1,0,1,2,0,0,1,3,0,0,0,1,4,2,0,0,0,1,5,4,0,0,0,0,1,6,8,0,0,0, %T A350530 0,0,1,7,12,4,0,0,0,0,0,1,8,18,12,8,4,0,0,0,0,1,9,24,28,36,28,4,0,0,0, %U A350530 0,1,10,32,52,84,116,48,16,0,0,0,0 %N A350530 Square array read by antidiagonals downwards: T(n,k) is the number of sequences of length n with terms in 0..k such that the (n-1)-st difference is zero, but no earlier iterated difference is zero, n, k >= 1. %C A350530 For fixed n, T(n,k) is a quasi-polynomial of degree n-1 in k. For example, T(4,k) = (8/27)*k^3 - 2*k^2 + b(k)*k + c(k), where b and c are periodic with period 3. %H A350530 Pontus von Brömssen, <a href="/A350530/b350530.txt">Antidiagonals n = 1..19, flattened</a> %e A350530 Array begins: %e A350530 n\k| 0 1 2 3 4 5 6 7 8 9 10 %e A350530 ---+-------------------------------------------------- %e A350530 1 | 1 1 1 1 1 1 1 1 1 1 1 %e A350530 2 | 0 1 2 3 4 5 6 7 8 9 10 %e A350530 3 | 0 0 0 2 4 8 12 18 24 32 40 %e A350530 4 | 0 0 0 0 0 4 12 28 52 84 132 %e A350530 5 | 0 0 0 0 0 8 36 84 176 332 568 %e A350530 6 | 0 0 0 0 4 28 116 308 704 1396 2548 %e A350530 7 | 0 0 0 0 4 48 232 728 2104 4940 11008 %e A350530 8 | 0 0 0 0 16 100 556 1936 7092 19908 49364 %e A350530 9 | 0 0 0 0 12 176 1348 6588 23356 74228 202504 %e A350530 10 | 0 0 0 0 8 268 2492 15544 72820 259800 842688 %e A350530 For n = 4 and k = 6, the following T(4,6) = 12 sequences are counted: 1454, 1564, 2125, 2565, 3126, 3236, 4541, 4651, 5212, 5652, 6213, 6323. %o A350530 (Python) %o A350530 def A350530_col(k,nmax): %o A350530 d = [] %o A350530 c = [0]*nmax %o A350530 while 1: %o A350530 if not d or all(d[-1][:-1]): %o A350530 if d and d[-1][-1] == 0: %o A350530 c[len(d)-1] += 1 + (0 != 2*d[0][0] != k+1) %o A350530 elif len(d) < nmax: %o A350530 d.append([-1]) %o A350530 for i in range(len(d)-1): %o A350530 d[-1].append(d[-1][-1]-d[-2][i]) %o A350530 while d and d[-1][0] == k: %o A350530 d.pop() %o A350530 if not d or len(d) == 1 and 2*d[0][0] >= k: return c %o A350530 for i in range(len(d)): %o A350530 d[-1][i] += 1 %Y A350530 Cf. A200154, A350365, A350529. %Y A350530 Rows: A000012 (n=1), A001477 (n=2), A007590 (n=3). %Y A350530 Columns: A000007 (k=0), A019590 (k=1), A130706 (k=2). %K A350530 nonn,tabl %O A350530 1,8 %A A350530 _Pontus von Brömssen_, Jan 03 2022