cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350537 Smallest number m > 1 such that (2n+1)*m = A350536(n) contains only odd digits.

This page as a plain text file.
%I A350537 #25 Jan 22 2022 08:40:39
%S A350537 3,3,3,5,11,3,3,5,3,3,15,5,3,5,11,3,3,5,3,3,13,13,3,11,11,3,3,13,3,3,
%T A350537 13,5,3,5,11,5,7,5,7,5,17,11,7,11,11,21,15,21,35,101,11,5,3,5,11,3,3,
%U A350537 5,3,3,11,11,3,11,15,3,3,13,7,7,11,5,11,5,13,5,9,5,47,5
%N A350537 Smallest number m > 1 such that (2n+1)*m = A350536(n) contains only odd digits.
%C A350537 Record values of a(n) are 3, 5, 11, 15, 17, 21, 35, 101, 155, ...
%H A350537 Michael De Vlieger, <a href="/A350537/b350537.txt">Table of n, a(n) for n = 0..10000</a>
%F A350537 a(n) = A350536(n) / (2n+1).
%e A350537 The smallest proper multiple of 21 = 2*10+1 with only odd digits is A350536(10) = 315, as 315 = 21 * 15, a(10) = 15.
%t A350537 Table[m=2;While[Or@@EvenQ[IntegerDigits[(2n+1)*++m]]];m,{n,0,79}] (* _Giorgos Kalogeropoulos_, Jan 12 2022 *)
%o A350537 (PARI) isok(k) = my(d=digits(k)); #d == #select(x->((x%2)==1), d);
%o A350537 a(n) = my(k=6*n+3); while (!isok(k), k+=4*n+2); k/(2*n+1); \\ _Michel Marcus_, Jan 12 2022
%Y A350537 Cf. A078221, A296009, A350536, A350538, A350697.
%K A350537 nonn,base
%O A350537 0,1
%A A350537 _Bernard Schott_, Jan 12 2022
%E A350537 More terms from _Michel Marcus_, Jan 12 2022