This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350538 #27 Jan 12 2022 21:00:25 %S A350538 2,4,6,8,20,24,28,24,288,20,22,24,26,28,60,48,68,288,228,40,42,44,46, %T A350538 48,200,208,486,84,406,60,62,64,66,68,280,288,222,228,468,80,82,84,86, %U A350538 88,2880,460,282,240,686,200,204,208,424,486,220,224,228,406,826 %N A350538 a(n) is the smallest proper multiple of n which contains only even digits. %C A350538 Inspired by the problem 1/2 of International Mathematical Talent Search, round 2 (see link). %C A350538 Differs from A061807 when n is in A014263. - _Michel Marcus_, Jan 05 2022 %H A350538 Chai Wah Wu, <a href="/A350538/b350538.txt">Table of n, a(n) for n = 1..10000</a> %H A350538 International Mathematical Talent Search, <a href="https://www2.cms.math.ca/Competitions/IMTS/imts2.html">Problem 1/2</a>, Round 2. %e A350538 a(9) = 288 = 32 * 9 is the smallest multiple of 9 which contains only even digits. %t A350538 a[n_] := Module[{k = 2*n}, While[! AllTrue[IntegerDigits[k], EvenQ], k += n]; k]; Array[a, 60] (* _Amiram Eldar_, Jan 05 2022 *) %o A350538 (Python) %o A350538 def a(n): %o A350538 m, inc = 2*n, n if n%2 == 0 else 2*n %o A350538 while not set(str(m)) <= set("02468"): m += inc %o A350538 return m %o A350538 print([a(n) for n in range(1, 60)]) # _Michael S. Branicky_, Jan 05 2022 %o A350538 (Python) %o A350538 from itertools import count, product %o A350538 def A350538(n): %o A350538 for l in count(len(str(n))-1): %o A350538 for a in '2468': %o A350538 for b in product('02468',repeat=l): %o A350538 k = int(a+''.join(b)) %o A350538 if k > n and k % n == 0: %o A350538 return k # _Chai Wah Wu_, Jan 12 2022 %o A350538 (PARI) a(n) = my(k=2); while(#select(x->((x%2) == 1), digits(k*n)), k++); k*n; \\ _Michel Marcus_, Jan 12 2022 %Y A350538 Cf. A061807, A350536. %Y A350538 Terms belong to A014263. %K A350538 nonn,base %O A350538 1,1 %A A350538 _Bernard Schott_, Jan 05 2022 %E A350538 More terms from _Michael S. Branicky_, Jan 05 2022