This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350541 #20 Feb 28 2023 13:07:28 %S A350541 12,180,810,5640,9420,18042,62970,88800,97842,109830,165702,284730, %T A350541 392262,452520,626610,663570,663582,855720,983430,1002342,1003350, %U A350541 1068702,1146780,1155612,1322160,1329702,1592862,1678752,1718862,1748472,2116560,2144490 %N A350541 Twin primes x, represented by their average, such that x is the first and x+18 the last of three successive twins. %C A350541 Subsequence of A014574. For x>6, d=18 is the least possible difference between the least and the greatest of three twins. For d=12, one of the six terms 6*k+-1, 6*k+6+-1,6*k+12+-1 would be divisible by 5. Therefore, d>12, except for x=6. %C A350541 The distribution of 35314 terms < 10^11 is in accordance with the k-tuple conjecture, see links "k-tuple conjecture" and "Test of the k-tuple conjecture". %C A350541 Generalizations: %C A350541 Twin primes x such that x is the first and x+d the last of m successive twins. %C A350541 m d %C A350541 1 0 A014574(n) twin primes %C A350541 2 6 A173037(n)-3 %C A350541 3 12 Only one quadruple: (6,12,18,30) %C A350541 3 18 Current sequence %C A350541 4 24 Only one quintuple: (6,12,18,30,42) %C A350541 4 30 A350542 %C A350541 5 36 See A350543 %C A350541 5 42 See A350543 %C A350541 5 48 A350543 %H A350541 Gerhard Kirchner, <a href="/A350541/a350541.pdf">Test of the k-tuple conjecture</a> %H A350541 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/k-TupleConjecture.html">k-tuple conjecture</a>. %e A350541 Triples of twins Example 6-tuple of primes %e A350541 (x,x+ 6,x+18) x= 12 (11,13,17,19,29,31) %e A350541 (x,x+12,x+18) x=180 (179,181,191,193,197,199) %t A350541 Select[Prime@Range[4,160000],Count[Range[#,#+18],_?(PrimeQ@#&&PrimeQ[#+2]&)]==3&]+1 (* _Giorgos Kalogeropoulos_, Jan 07 2022 *) %o A350541 (Maxima) %o A350541 block(twin:[], n:0, p1:11, j2:1, nmax: 3, %o A350541 /*returns nmax terms*/ %o A350541 m:3, d:18, w: makelist(-d,i,1,m), %o A350541 while n<nmax do( %o A350541 p2: next_prime(p1), if p2-p1=2 then( %o A350541 k:p1+1, j1:j2, j2:1+ mod(j2,m), w[j1]:k, %o A350541 if w[j1]-w[j2]=d then(n:n+1, twin: append(twin,[k-d]))), %o A350541 p1:p2), twin); %Y A350541 Cf. A014574, A173037, A350542, A350543. %K A350541 nonn %O A350541 1,1 %A A350541 _Gerhard Kirchner_, Jan 06 2022