This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350542 #17 Mar 04 2023 11:32:29 %S A350542 12,626598,663570,1322148,2144478,2668218,6510192,6937938,10187910, %T A350542 11495580,11721768,18873498,18873510,25658430,39659532,39851292, %U A350542 46533468,80572158,84099318,86944602,91814712,93956100,123911532,128469150,129902022,148979838 %N A350542 Twin primes x, represented by their average, such that x is the first and x+30 the last of four successive twins. %C A350542 Subsequence of A014574. For x>6, d=30 is the least possible difference between the least and the greatest of four twins. With d=24, six primes would have the form 6*k+-1, 6*k+6+-1,6*k+12+-1 which is impossible because one of the six numbers would be divisible by 5. Therefore, d>24, except for x=6. The distribution of 1134 terms < 10^11 is in accordance with the k-tuple conjecture, see links "k-tuple conjecture" and A350541, "Test of the k-tuple conjecture". %C A350542 Generalization: %C A350542 Twin primes x such that x is the first and x+d the last of m successive twins. %C A350542 m d %C A350542 1 0 A014574(n) twin primes %C A350542 2 6 A173037(n)-3 %C A350542 3 12 Only one quadruple: (6,12,18,30) %C A350542 3 18 A350541 %C A350542 4 24 Only one quintuple: (6,12,18,30,42) %C A350542 4 30 Current sequence %C A350542 5 36 See A350543 %C A350542 5 42 See A350543 %C A350542 5 48 A350543 %H A350542 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/k-TupleConjecture.html">k-Tuple Conjecture</a>. %e A350542 Quadruples of twins Example 8-tuple of primes %e A350542 (x,x+ 6,x+18,x+30) x=12 (11,13,17,19,29,31,41,43) %e A350542 (x,x+12,x+24,x+30) x=626598 (x-1,x+1,x+11,x+13,x+23,x+25,x+29,x+31) %e A350542 (x,x+12,x+18,x+30) x=663570 (x-1,x+1,x+11,x+13,x+17,x+19,x+29,x+31) %e A350542 (x,x+ 6,x+24,x+30), (x,x+6,x+12,x+30) and (x,x+18,x+24,x+30) do not occur for divisibility reasons. %t A350542 Select[Prime@Range[4,200000], Count[Range[#,#+30],_?(PrimeQ@#&&PrimeQ[#+2]&)]==4&]+1 (* _Giorgos Kalogeropoulos_, Jan 07 2022 *) %o A350542 (Maxima) %o A350542 block(twin:[], n:0, p1:11, j2:1, nmax: 3, %o A350542 /*returns nmax terms*/ %o A350542 m:4, d:30, w: makelist(-d,i,1,m), %o A350542 while n<nmax do( %o A350542 p2: next_prime(p1), if p2-p1=2 then( %o A350542 k:p1+1, j1:j2, j2:1+ mod(j2,m), w[j1]:k, %o A350542 if w[j1]-w[j2]=d then(n:n+1, twin: append(twin,[k-d]))), %o A350542 p1:p2), twin); %Y A350542 Cf. A014574, A173037, A350541, A350543. %K A350542 nonn %O A350542 1,1 %A A350542 _Gerhard Kirchner_, Jan 07 2022