This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350546 #9 Nov 16 2023 19:04:44 %S A350546 3,6,8,11,12,13,15,18,20,24,27,29,30,35,38,39,40,41,42,48,51,53,56,58, %T A350546 61,63,66,68,72,73,74,80,83,84,85,87,89,90,97,99,102,104,105,110,120, %U A350546 123,125,130,132,143,146,147,148,150,152,156,157,168,171,173,182,185,193,195,198,200 %N A350546 Numbers k such that the period of the continued fraction for sqrt(k) is a prime. %e A350546 13 is a term because the continued fraction for sqrt(13) is (3;1,1,1,1,6,1,1,1,1,6,...), whose periodic part is (1,1,1,1,6); its length (the period) is 5 (a prime). %t A350546 Select[Range@200,PrimeQ@Length@Last@ContinuedFraction[Sqrt[#]]&] %o A350546 (PARI) isokf(n, p) = {localprec(p); my(cf = contfrac(sqrt(n))); setsearch(Set(cf), 2*cf[1]); } %o A350546 f(n) = {if (issquare(n), 0, my(p=100); while (! isokf(n, p), p+=100); localprec(p); my(cf = contfrac(sqrt(n))); for (k=2, #cf, if (cf[k] == 2*cf[1], return (k-1))); ); } \\ A003285 %o A350546 isok(k) = isprime(f(k)); \\ _Michel Marcus_, Jan 05 2022 %Y A350546 Cf. A003285, A206586, A003814. %K A350546 nonn %O A350546 1,1 %A A350546 _Giorgos Kalogeropoulos_, Jan 04 2022